Standard procedure at chemical accident site to ensure protection of evidence
https://doi.org/10.35825/2587-5728-2025-9-4-322-344
Abstract
Highlights
- If we want to find someone guilty of violating the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction (Chemical Weapons Convention or CWC), we should prove the involvement of specific persons, whose DNA can be identified using biological traces left at the chemical accident site.
- Decontaminant mixtures, used at the chemical accident site can destroy the DNA and that makes genotyping impossible.
- The authors have elaborated special procedure that permits to preserve biological traces at the chemical accident site for further forensic analysis.
Relevance. It is crucial to provide objective evidence against persons who are involved in chemical accidents. The only way is to make a DNA assay of biological traces left at chemical accident site. That is why we should keep these traces intact and preserve their integrity.
Purpose of the study is to provide a scientific justification for the standard procedure that ensures protection of evidence at chemical accident site.
Study base sources. The authors have studied scientific publications including those, available on the Internet.
Method. Analytical method has been employed.
Results. The authors of this paper have outlined the forensic significance of biological traces with DNA at the chemical accident site. They have evaluated the risks of the DNA data loss, when the site is exposed to decontaminant agents. It has been proved that chlorine containing reagents destroy the DNA, whereas mixtures that contain magnesium oxide, titanium oxide, 2-aminoethanol and calcium hypochlorite are safe for the DNA. The authors of this paper have developed a procedure that permits either to collect biomaterial before decontamination or to use mixtures that are harmless to the DNA.
Conclusion. To preserve evidence for further forensic analysis it is vital to avoid using decontaminants that may destroy the DNA. In this case the neutral mixtures should be used.
Keywords
About the Authors
V. V. ZavyalovРоссия
Vasily V. Zavyalov. Senior Researcher. Cand. Sci. (Chem.).
Entuziastov Proezd, 19, Moscow 111024
A. A. Zavyalova
Россия
Anna A. Zavyalova. Docent. Cand. Sci. (Chem.).
Akademika Volgina Str., 12, Moscow 117997
N. V. Zavyalova
Россия
Natalya V. Zavyalova. Leading Researcher. Dr Sci. (Biol.), Professor.
Entuziastov Proezd, 19, Moscow 111024
V. A. Kovtun
Россия
Victor A. Kovtun. Head of the Centre. Cand. Sci. (Chem.), Associate Professor.
Entuziastov Proezd, 19, Moscow 111024
M. P. Sharoyko
Россия
Maxim P. Sharoyko. Deputy Head of the Centre. Cand. Sci. (Techn.).
Entuziastov Proezd, 19, Moscow 111024
References
1. Kummer N, Metzger C. Investigations forensiques lors d'incidents atomiques, biologiques et chimiques en Suisse: Contexte et réflexions préliminaires. Revue Internationale de Criminologie et de Police Technique et Scientifique. 2019;484.
2. Kummer N, Augustyns B, Van Rompaey D, De Meulenaere K. Forensic investigation of incidents involving chemical threat agent: Presentation of the operating procedure developed in Belgium for a field-exercise. Forensic Sci Int. 2019;299:180-6. https://doi.org/10.1016/j.forsciint.2019.03.037
3. Radgen-Morvant I, Curty C, Kummer N, Delémont O. Effects of chemical & biological warfare agent decontaminants on trace survival: Impact on DNA profiling from blood and saliva. Forensic Sci Int. 2024;364:112206. https://doi.org/10.1016/j.forsciint.2024.112206
4. Baechler S. Study of criteria influencing the success rate of DNA swabs in operational conditions: a contribution to an evidence-based approach to crime scene investigation and triage. Forensic Sci Int Genet. 2016;20:130-9. https://doi.org/10.1016/j.fsigen.2015.10.009
5. Van Oorschot RA, Ballantyne KN, Mitchell RJ. Forensic trace DNA: a review. Investig Genet. 2010;1:14. https://doi.org/10.1186/2041-2223-1-14
6. Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA: A review. Forensic Sci Int Genet. 2010;4:148-57. https://doi.org/10.1016/j.fsigen.2009.09.007
7. Poetsch M, Markwerth P, Konrad H, Bajanowski T, Helmus J. About the influence of environmental factors on the persistence of DNA: a long-term study. Int J Legal Med. 2022;136:687-93. https://doi.org/10.1007/s00414-022-02800-6
8. Dash HR, Shrivastava P, Lorente JA, editors. Handbook of DNA Profiling. Singapore: Springer Singapore; 2022. https://doi.org/10.1007/978-981-16-4318-7
9. Goodwin W, editor. Forensic DNA Typing Protocols. New York, NY: Springer New York; 2016. https://doi.org/10.1007/978-1-4939-3597-0
10. Bukyya JL, Tejasvi MLA, Avinash A, Talwade P, Afroz MM, Pokala A, et al. DNA Profiling in Forensic Science: A Review. Glob Med Genet. 2021;8:135-43. https://doi.org/10.1055/s-0041-1728689
11. Kanokwongnuwut P, Martin B, Taylor D, Kirkbride KP, Linacre A. How many cells are required for successful DNA profiling? Forensic Sci Int Genet. 2021;51:102453. https://doi.org/10.1016/j.fsigen.2020.102453
12. Bäumer C, Fisch E, Wedler H, Reinecke F, Korfhage C. Exploring DNA quality of single cells for genome analysis with simultaneous whole-genome amplification. Sci Rep. 2018;8:7476. https://doi.org/10.1038/s41598-018-25895-7
13. Schulze Johann K, Bauer H, Wiegand P, Pfeiffer H, Vennemann M. Detecting DNA damage in stored blood samples. Forensic Sci Med Pathol. 2022;19:50-9. https://doi.org/10.1007/s12024-022-00549-3
14. Butler JM. Advanced Topics in Forensic DNA Typing: Methodology. Amsterdam Heidelberg: Elsevier, Academic Press; 2012. https://doi.org/10.1016/C2011-0-04189-3
15. Whiteman M, Hong HS, Jenner A, Halliwell B. Loss of oxidized and chlorinated bases in DNA treated with reactive oxygen species: implications for assessment of oxidative damage in vivo. Biochem Biophys Res Commun. 2002;296:883-9. https://doi.org/10.1016/S0006-291X(02)02018-1
16. Dembinski GM, Picard CJ. Effects of microbial DNA on human DNA profiles generated using the PowerPlex® 16 HS system. J Forensic Leg Med. 2017;52:208-14. https://doi.org/10.1016/j.jflm.2017.09.010
17. Abrams S, Reusse A, Ward A, Lacapra J. A simulated arson experiment and its effect on the recovery of DNA. Can Soc Forensic Sci J. 2008;41:53-60. https://doi.org/10.1080/00085030.2008.10757164
18. Phetpeng S, Kitpipit T, Thanakiatkrai P. Systematic study for DNA recovery and profiling from common IED substrates: From laboratory to casework. Forensic Sci Int Genet. 2015;17:53-60. https://doi.org/10.1016/j.fsigen.2015.03.007
19. Galijasevic AA. DNA recovery potential in simulated fire debris evidence [Master thesis]. Boston: University of Boston; 2022.
20. O’Hagan A, Calder R. DNA and fingerprint recovery from an arson scene. Forensic Res Criminol Int J. 2020;8:15-29. https://doi.org/10.15406/frcij.2020.08.00303
21. Helmus J, Zorell S, Bajanowski T, Poetsch M. Persistence of DNA on clothes after exposure to water for different time periods – a study on bathtub, pond, and river. Int J Legal Med. 2018;132:99-106. https://doi.org/10.1007/s00414-017-1695-2
22. Korzik ML, De Alcaraz-Fossoul J, Adamowicz MS, San Pietro D. Preliminary study: DNA transfer and persistence on non-porous surfaces submerged in spring water. Genes. 2023;14:1045. https://doi.org/10.3390/genes14051045
23. Zupanič-Pajnič I, Marrubini G, Pogorelc BG, Zupanc T, Previderè C, Fattorini P. On the long term storage of forensic DNA in water. Forensic Sci Int. 2019;305:110031. https://doi.org/10.1016/j.forsciint.2019.110031
24. Graham E, Adamowicz M. Effects of different types of water on the degradation rate of human DNA in bone and tissue. University of New Haven; 2015.
25. Bright J-A, Cockerton S, Harbison S, Russell A, Samson O, Stevenson K. The Effect of cleaning agents on the ability to obtain DNA profiles using the identifiler™ and PowerPlex® Y multiplex kits. J Forensic Sci. 2011;56:181-5. https://doi.org/10.1111/j.1556-4029.2010.01564.x
26. Harris KA, Thacker CR, Ballard D, Court DS. The effect of cleaning agents on the DNA analysis of blood stains deposited on different substrates. Int Congr Ser. 2006;1288:589-91. https://doi.org/10.1016/j.ics.2005.09.171
27. Li VWH, Toogood H, Ryan S, Meakin GE. The effects of various household cleaning methods on DNA persistence on mugs and knives. Forensic Sci Int Genet Suppl Ser. 2019;7:277-8. https://doi.org/10.1016/j.fsigss.2019.09.109
28. Nilsson M, De Maeyer H, Allen M. Evaluation of different cleaning strategies for removal of contaminating DNA molecules. Genes. 2022;13:162. https://doi.org/10.3390/genes13010162
29. Thabet HZ, Ghandour NM, Salama RH. Effect of some cleaning products on blood DNA retrieval from cloth. Egypt J Forensic Sci Appl Toxicol. 2018;18:53-66. https://doi.org/10.21608/ejfsat.2018.16992
30. Kemp BM, Smith DG. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Sci Int. 2005;154:53-61. https://doi.org/10.1016/j.forsciint.2004.11.017
31. Tuccinardi A. Investigating the Efficacy of DNA Damage with Bleach in Forensic Laboratories and at Crime Scenes [Honors thesis]. New Haven: University of New Haven; 2020.
32. Frégeau CJ, Dalpé C. Simulated radioactive decontamination of biological samples using a portable DNA extraction instrument for rapid DNA profiling. Forensic Sci Int. 2016;259:161-78. https://doi.org/10.1016/j.forsciint.2015.12.026
33. Wilkinson D, Holowachuk S, Corbett C, Antonation K, Rostek L, Wotherspoon A, et al. Effect of decontamination agents following biological contamination on fingermarks, footwear, documents and DNA. Can Soc Forensic Sci J. 2020;53:173-209. https://doi.org/10.1080/00085030.2020.1834753
34. Hoile R, Banos C, Colella M, Walsh SJ, Roux C. Gamma irradiation as a biological decontaminant and its effect on common fingermark detection techniques and DNA profiling. J Forensic Sci. 2010;55:171-7. https://doi.org/10.1111/j.1556-4029.2009.01233.x
35. Wilkinson DA, Sweet D, Fairley D. Recovery of DNA from exhibits contaminated with chemical warfare agents: a preliminary study of the effect of decontamination agents and chemical warfare agents on DNA. Can Soc Forensic Sci J. 2007;40:15-22. https://doi.org/10.1080/00085030.2007.10757148
36. Timbers J, Wilkinson D, Hause CC, Smith ML, Zaidi MA, Laframboise D, et al. Elimination of bioweapons agents from forensic samples during extraction of human DNA. J Forensic Sci. 2014;59:1530-40. https://doi.org/10.1111/1556-4029.12561
37. Wilkinson D, Hulst AG, De Reuver LPJ, Van Krimpen SH, Van Baar BML. The fate of the chemical warfare agent during DNA extraction. J Forensic Sci. 2007;52:1272-83. https://doi.org/10.1111/j.1556-4029.2007.00569.x
38. Boone CM. Present state of CBRN decontamination methodologies. 2007.
39. Shaw K, Sesardić I, Bristol N, Ames C, Dagnall K, Ellis C, et al. Comparison of the effects of sterilisation techniques on subsequent DNA profiling. Int J Legal Med. 2008;122:29-33. https://doi.org/10.1007/s00414-007-0159-5
40. Monson KL, Ali S, Brandhagen MD, Duff MC, Fisher CL, Lowe KK, et al. Potential effects of ionizing radiation on the evidentiary value of DNA, latent fingerprints, hair, and fibers: a comprehensive review and new results. Forensic Sci Int. 2018;284:204-18. https://doi.org/10.1016/j.forsciint.2018.01.012
41. Comte J, Baechler S, Gervaix J, Lock E, Milon M-P, Delémont O, et al. Touch DNA collection – performance of four different swabs. Forensic Sci Int Genet. 2019;43:102113. https://doi.org/10.1016/j.fsigen.2019.06.014
42. Socratous E, Graham EAM. DNA reviews: DNA identification following CBRN incidents. Forensic Sci Med Pathol. 2008;4:255-8. https://doi.org/10.1007/s12024-008-9066-4
43. Khare P, Raj V, Chandra S, Agarwal S. Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. J Forensic Dent Sci. 2014;6:81. https://doi.org/10.4103/0975-1475.132529
44. Ramsey M. Persistence of touch DNA for forensic analysis. National Institute of Justice; 2022.
45. Durdiaková J, Kamodyová N, Ostatníková D, Vlková B, Celec P. Comparison of different collection procedures and two methods for DNA isolation from saliva. Clin Chem Lab Med. 2012;50. https://doi.org/10.1515/cclm.2011.814
46. Karched M, Bhardwaj RG, Pauline EM, George S, Asikainen S. Effect of preparation method and storage period on the stability of saliva DNA. Arch Oral Biol. 2017;81:21-5. https://doi.org/10.1016/j.archoralbio.2017.04.011
47. Samie L, Champod C, Glutz V, Garcia M, Castella V, Taroni F. The efficiency of DNA extraction kit and the efficiency of recovery techniques to release DNA using flow cytometry. Sci Justice. 2019;59:405-10. https://doi.org/10.1016/j.scijus.2019.02.003
48. Qiagen. QIAamp® DNA Mini and Blood Mini. Handbook. 2025.
49. Holmes AS, Houston R, Elwick K, Gangitano D, Hughes-Stamm S. Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples. Int J Legal Med. 2018;132:691-701. https://doi.org/10.1007/s00414-017-1745-9
50. Vernarecci S, Ottaviani E, Agostino A, Mei E, Calandro L, Montagna P. Quantifiler® Trio Kit and forensic samples management: A matter of degradation. Forensic Sci Int Genet. 2015;16:77-85. https://doi.org/10.1016/j.fsigen.2014.12.005
51. Butler JM. STR Profiles. In: Butler JM, editor. Advanced Topics in Forensic DNA Typing: Interpretation. Elsevier; 2015. p. 109-27. https://doi.org/10.1016/B978-0-12-405213-0.00005-1
52. Gwozdzinski K, Pieniazek A, Gwozdzinski L. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid Med Cell Longev. 2021;2021:6639199. https://doi.org/10.1155/2021/6639199
53. Urakov A, Urakova N, Nikolenko V, Belkharoeva R, Achkasov E, Kochurova E, et al. Current and emerging methods for treatment of hemoglobin related cutaneous discoloration: a literature review. Heliyon. 2021;7:e05954. https://doi.org/10.1016/j.heliyon.2021.e05954
54. Castelló A, Francés F, Verdú F. DNA Evidence Uncompromised by Active Oxygen. Sci World J. 2010;10:387-92. https://doi.org/10.1100/tsw.2010.47
55. Edler C, Krebs O, Gehl A, Palatzke K, Tiedemann N, Schröder AS, et al. The effect of bleaching agents on the DNA analysis of bloodstains on different floor coverings. Int J Legal Med. 2020;134:921-7. https://doi.org/10.1007/s00414-020-02250-y
56. Bragg SA, Armstrong KC, Xue Z-L. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process. Talanta. 2012;97:118-23. https://doi.org/10.1016/j.talanta.2012.04.004
57. White DC, Teasdale PR. The oxygenation of blood by hydrogen peroxide: in vitro studies. Br J Anaesth. 1966;38:339-44. https://doi.org/10.1093/bja/38.5.339
58. Rynkowska A, Stępniak J, Karbownik-Lewińska M. Fenton reaction-induced oxidative damage to membrane lipids and protective effects of 17β-estradiol in porcine ovary and thyroid homogenates. Int J Environ Res Public Health. 2020;17:6841. https://doi.org/10.3390/ijerph17186841
59. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. J Biol Chem. 1984;259:14354-6. https://doi.org/10.1016/S0021-9258(17)42604-4
60. Marrone A, Ballantyne J. Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood. PLoS ONE. 2009;4:e5110. https://doi.org/10.1371/journal.pone.0005110
61. Sewell J, Quinones I, Ames C, Multaney B, Curtis S, Seeboruth H, et al. Recovery of DNA and fingerprints from touched documents. Forensic Sci Int Genet. 2008;2:281-5. https://doi.org/10.1016/j.fsigen.2008.03.006
62. Finnis J, Murphy C, Davidson G, Alexander K, Lewis J, Boyce M, et al. Enzyme activity, DNA degradation and drying times of semen, saliva and vaginal material. Sci Justice. 2023;63:663-70. https://doi.org/10.1016/j.scijus.2023.09.001
63. Bannick K. Mechanisms to Combat DNA Degradation [Honors project]. Bowling Green: Bowling Green State University; 2021.
64. Butler JM. Low-Level DNA and Complex Mixtures. In: Butler JM, editor. Advanced Topics in Forensic DNA Typing: Interpretation. Elsevier; 2015. p. 159-82. https://doi.org/10.1016/B978-0-12-405213-0.00007-5
65. Hughes-Stamm SR, Ashton KJ, Van Daal A. Assessment of DNA degradation and the genotyping success of highly degraded samples. Int J Legal Med. 2011;125:341-8. https://doi.org/10.1007/s00414-010-0455-3
66. Gouveia N, Brito P, Bogas V, Serra A, Bento AM, Lopes V, et al. The effect of different levels of degradation and DNA concentrations on the quality of genetic profiles. Forensic Sci Int Genet Suppl Ser. 2017;6:e428-e9. https://doi.org/10.1016/j.fsigss.2017.09.151
67. McCord B, Opel K, Funes M, Zoppis S, Jantz LM. An Investigation of the Effect of DNA Degradation and Inhibition on PCR Amplification of Single Source and Mixed Forensic Samples. U.S. Department of Justice; 2011.
68. Elwick K, Gauthier Q, Rink S, Cropper E, Kavlick MF. Recovery of DNA from fired and unfired cartridge casings: comparison of two DNA collection methods. Forensic Sci Int Genet. 2022;59:102726. https://doi.org/10.1016/j.fsigen.2022.102726
69. Finnegan M, Linley E, Denyer SP, McDonnell G, Simons C, Maillard J-Y. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemother. 2010;65:2108-15. https://doi.org/10.1093/jac/dkq308
Review
For citations:
Zavyalov V.V., Zavyalova A.A., Zavyalova N.V., Kovtun V.A., Sharoyko M.P. Standard procedure at chemical accident site to ensure protection of evidence. Journal of NBC Protection Corps. 2025;9(4):322-344. (In Russ.) https://doi.org/10.35825/2587-5728-2025-9-4-322-344
JATS XML





















