Preview

Journal of NBC Protection Corps

Advanced search

Treatment of Radiation Lesions with Mesenchymal Stem Cells

https://doi.org/10.35825/2587-5728-2023-7-1-24-35

EDN: jrcnaj

Abstract

   Acute radiation syndrome (ARS) is an acute illness caused by exposure to a high dose of ionizing radiation. ARS is the deterministic effect of radiation exposure of the whole body or a significant body volume (partial body irradiation) above a threshold dose of about 1 Gy (gray). Radiation accidents, such as those in Chernobyl (1986) and Fukushima (2011), or the possible use of nuclear weapons during the hostilities or terrorist attacks, can lead to the massive development of ARS in humans.

   The aim of the work is to introduce a new method of post-radiation treatment – the use of allogeneic mesenchymal stem cells (MSCs).

   Materials and methods. The information contained in specialized scientific journals that are freely available and accessible through the global Internet was studied.

   Discussion of the results. In the scenario of mass exposure of the population, when from several tens (hundreds) to millions of people can be irradiated, the transfusion of hematopoietic stem cells traditionally used in such cases would be impossible. MSCs can possibly differentiate into specialized cells, that is, turn into cells of various organs and tissues or induce such kind of regeneration. For practical use, there are two main sources of their isolation and reproduction ex vivo – bone marrow and adipose tissue. To date, it has been shown that MSCs derived from adipose tissue can be effective in mitigating the effects of acute radiation illness. Intravenously applied MSCs are migrating mainly to the bone marrow and are partially restoring its function. Deep anatomical structures are also involved in local radiation injuries: bone, muscles, nerves, blood and lymphatic vessels and skin. There is a strong body of evidence suggesting the «repair effect» of MSCs when used to treat such lesions. This is because MSCs can induce the repair and regeneration of the anatomical structures which they are locally applied, possibly by the paracrine effect. The main advantage of allogeneic MSCs over autologous ones is their logistical accessibility. They can be produced in advance in quantities and stored frozen. After thawing, the cells must be cultured for at least 48 hours in humidified incubators with the addition of 5 % CO2.

   Findings. Treatment of MSCs should be started as soon as possible after radiation exposure. Rescue of damaged hematopoiesis in the bone marrow can be achieved by multiple intravenous administration of up to 1 million (106) freshly prepared allogeneic MSCs/kg body weight. Locally (around and in the irradiation area), the dose of MSCs may be lower – 20 million cells. Repeated topical application should be carried out at intervals of two to four weeks. Subsequent surgical reconstruction should be performed by an experienced surgeon and in a specialized center with concomitant topical
application of MSCs.

About the Author

Já. Lakota
Centre of Experimental Medicine, SAS; Comenius University
Slovakia

Ján Lakota, MD, PhD

841 04

Dubravska cesta 9

Faculty of Management

820 05

Odbojárov 10

Bratislava



References

1. Ferrari C., Manenti G., Malizia A. Sievert or Gray: Dose Quantities and Protection Levels in Emergency Exposure // Sensors (Basel). 2023. V. 23(4). P. 1918. doi: 10.3390/s23041918

2. Macià I., Garau M., Lucas Calduch A., López E.C. Radiobiology of the acute radiation syndrome // Rep Pract Oncol Radiother. 2011. V. 16. № 4. P. 123–130. doi: 10.1016/j.rpor.2011.06.001

3. Gourmelon P., Marquette C., Agay D. et al. Involvement of the central nervous system in radiation-induced multi-organ dysfunction and/or failure // Br. J. Radiol. 2005. Suppl. 27. P. 62–68. doi: 10.1259/bjr/77700378

4. Gaugler M.-H. A unifying system: Does the vascular endothelium have a role to play in multi-organ failure following radiation exposure? // Br. J. Radiol. 2005. Suppl. 27. P. 100–105. doi: 10.1259/bjr/24511652

5. Medical Management of Radiation Accidents / Eds Gusev I.A., Guskova A.K., Mettler F.A., Barabanova A.V. 2<sup>nd</sup> edn, Boca Raton: CRC Press, FL, 2001. 225 p.

6. Lakota J., Dubrovcakova M., Haider KH. Human Mesenchymal Stem Cells: The Art to Use Them in the Treatment of Previously Untreatable // In: Handbook of Stem Cell Therapy / Ed. Haider K.H. Springer, Singapore. 2022. doi: 10.1007/978-981-19-2655-6_1

7. Koç O.N., Gerson S.L., Cooper B.W., et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy // J. Clin. Oncol. 2000. V. 18. № 2. P. 307–316. doi: 10.1200/JCO.2000.18.2.307.

8. Musiał-Wysocka A., Kot M., Majka M. The pros and cons of mesenchymal stem cell-based therapies // Cell Transplant. 2019. V. 28. № 7. P. 801–812. doi: 10.1177/0963689719837897

9. Horwitz E.M., Le Blanc K., Dominici M. et al. International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement // Cytotherapy. 2005. V. 7. № 5. P. 393–395. doi: 10.1080/14653240500319234

10. Le Blanc K., Rasmusson I., Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells // Lancet. 2004. V. 363. № 9419. P. 1439–1441. doi: 10.1016/S0140-6736(04)16104-7

11. Yau T.M., Pagani F.D., Mancini D.M. et al. Cardiothoracic Surgical Trials Network. Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure: A Randomized Clinical Trial // JAMA. 2019. V. 321. № 12. P. 1176–1186. doi: 10.1001/jama.2019.2341

12. Koç O.N., Day J., Nieder M., et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH) // Bone Marrow Transplant. 2002. V. 30. № 4. P. 215–222. doi: 10.1038/sj.bmt.1703650

13. Horwitz E.M., Gordon P.L., Koo W.K. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone // Proc Natl Acad Sci U S A. 2002. V. 99. № 13. P. 8932–8937. doi: 10.1073/pnas.132252399

14. Hare J.M., Fishman J.E., Gerstenblith G. et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial // JAMA. 2012. V. 308. № 22. P. 2369–2379. doi: 10.1001/jama.2012.25321

15. Hare J.M., DiFede D.L., Rieger A.C. et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial // J. Am. Coll. Cardiol. 2017. V. 69. № 5. P. 526–537. doi: 10.1016/j.jacc.2016.11.009

16. Lalu M.M., McIntyre L., Pugliese C. et al. Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials // PLoS One. 2012. V. 7. № 10. P. e47559. doi: 10.1371/journal.pone.0047559

17. Machado Cde V., Telles P.D., Nascimento I.L. Immunological characteristics of mesenchymal stem cells // Rev. Bras. Hematol. Hemoter. 2013. V. 35. № 1. P. 62–67. URL: https://www.researchgate.net/publication/236197336_Immunological_characteristics_of_mesenchymal_stem_cells

18. Lohan P., Coleman C.M., Murphy J.M. et al. Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation: should we be concerned? // Stem Cell Res. Ther. 2014. V. 5. № 4. P. 99. doi: 10.1186/scrt488

19. Asari S., Itakura S., Ferreri K. et al. Mesenchymal stem cells suppress B-cell terminal differentiation // Exp. Hematol. 2009. V 37. № 5. P. 604–615. doi: 10.1016/j.exphem.2009.01.005

20. Corcione A., Benvenuto F., Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions // Blood. 2006. V. 107. № 1. P. 367–372. doi: 10.1182/blood-2005-07-2657

21. Kariminekoo S., Movassaghpour A., Rahimzadeh A. et al. Implications of mesenchymal stem cells in regenerative medicine / Artif. Cells Nanomed. Biotechnol. 2016. V. 44. № 3. P. 749–757. doi: 10.3109/21691401.2015.1129620

22. Kinkaid H.Y., Huang X.P., Li R.K., Weisel R.D. What's new in cardiac cell therapy? Allogeneic bone marrow stromal cells as "universal donor cells" // J. Card. Surg. 2010. V. 25. № 3. P. 359–366. doi: 10.1111/j.1540-8191.2009.00984.x

23. Zhang J., Huang X., Wang H. et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy // Stem Cell Res. Ther. 2015. V. 6. P. 234. doi: 10.1186/s13287-015-0240-9

24. Poh K.K., Sperry E., Young R.G., Freyman T. et al. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, "off-the-shelf", cellular cardiomyoplasty strategy // Int. J. Cardiol. 2007. V. 117. № 3. P. 360–364. doi: 10.1016/j.ijcard.2006.04.092

25. Dainiak N., Albanese J. Medical management of acute radiation syndrome // J. Radiol. Prot. 2022. V. 42. № 3. doi: 10.1088/1361-6498/ac7d18

26. Chinnapaka S., Yang K.S., Samadi Y. et al. Allogeneic adipose-derived stem cells mitigate acute radiation syndrome by the rescue of damaged bone marrow cells from apoptosis // Stem Cells Transl. Med. 2021. V. 10. № 7. P. 1095–1114. doi: 10.1002/sctm.20-0455

27. Lakota J. Fate of human mesenchymal stem cells (MSCs) in humans and rodents-Is the current paradigm obtained on rodents applicable to humans? // J. Cell Mol. Med. 2018. V. 22. № 4. P. 2523–2524. doi: 10.1111/jcmm.13561

28. Lakota J., Gocarova K., Spanik S. Treatment of metastatic head and neck cancer with mesenchymal stem cells combined with prodrug gene therapy // Exp. Oncol. 2015. V. 37. № 4. P. 298. PMID: 26710845.

29. Akita S., Yoshimoto H., Ohtsuru A. et al. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries // Radiat. Prot. Dosimetry. 2012. V. 151. № 4. P. 656–660. doi: 10.1093/rpd/ncs176

30. Kotenko K.V., Eremin I.I., Moroz B.B. et al. Cell technologies in the treatment of radiation burns: experience Burnasyan Federal Medical Biophysical Centre // Genes & Cells. 2012. V. 7. № 2. P. 97–102. URL: https://www.researchgate.net/publication/287370125_Cell_technologies_in_the_treatment_of_radiation_burns_Experience_Burnasyan_Federal_Medical_Biophysical_Centre

31. Nicolay N.H., Lopez Perez R., Debus J., Huber P.E. Mesenchymal stem cells – a new hope for radiotherapy-induced tissue damage? // Cancer Lett. 2015. V. 366. № 2. P. 133–140. doi: 10.1016/j.canlet.2015.06.012. Epub 2015 Jul 9. PMID: 26166559.

32. Haider K.H. Handbook of Stem Cell Therapy, Springer Nature Singapore, 1<sup>st</sup> ed., 2022. ISBN 978-981-19-2654-9. doi: 10.1007/978-981-19-2655-6


Review

For citations:


Lakota J. Treatment of Radiation Lesions with Mesenchymal Stem Cells. Journal of NBC Protection Corps. 2023;7(1):24-35. https://doi.org/10.35825/2587-5728-2023-7-1-24-35. EDN: jrcnaj

Views: 472


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)