Preview

Journal of NBC Protection Corps

Advanced search

Toxic properties of holothurian’s triterpene glycosides

https://doi.org/10.35825/2587-5728-2019-3-1-23-39

EDN: xohphs

Abstract

Holothurians (or sea cucumbers) are echinoderms and are found in all areas of the world oceans. These animals produce special low-molecular metabolites - triterpene glycosides, which are a means of chemical protection of holothurians from predators. The content of triterpene glycosides in the tissues of holothurians can reach a significant amount of up to 1 g/kg, and especially many of these compounds are localized in the Cuvierian tubules - special protection organ presents in a number of tropical holothurians. Tritirepene glycosides of holothurians are quite toxic, they exhibit hemolytic, cytotoxic and neurotoxic activity at a concentration range of 1×104–1×106 M. The toxic properties of glycosides are based on the ability of these compounds to interact with ∆5-sterols (mainly cholesterol) of plasma membranes and form ion-conducting complexes. In turn, this leads to a change in the ion permeability and selectivity of biomembranes, disruption of barrier properties, ion homeostasis and osmolarity of cells, and further to cell lysis and death.
Contact with holoturias when diving in shallow water, which is fraught with damage to the eyes and mucous membranes by triterpene glycosides, may be of some danger to humans. Excessive consumption of commercial edible holothurians in food, especially without prior heat treatment, as is customary in some South-East Asia countries, can lead to diarrhea and dyspepsia. Triterpene glycosides in the bloodstream can lead to blood lysis and serious consequences up to death.
The holothurians are animals commercially harvested in Russia. They are used in food and for the preparation of medicinal supplements and preparations. Excessive consumption of commercial edible holothurians for food, especially without long-term boiling, as is customary in Southeast Asia, can lead to diarrhea and dyspepsia. Triterpene glycosides in the bloodstream can lead to blood lysis and serious consequences up to death. The use of dietary supplements with an uncontrolled glycoside content is fraught with similar consequences, and the presence of immunosuppressants among glycosides that have fallen into such additives and drugs can worsen the condition of patients or sick animals. Control of the qualitative and quantitative content of glycosides in food and medicinal products from holothurians should be an integral part of measures to improve the biological safety of citizens of the Russian Federation.

About the Authors

D. L. Aminin
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Dmitry Lvovich Aminin. Head of the laboratory, Senior Researcher, Doctor of Biological Sciences

Prospect 100-let Vladivostoky, 159, Vladivostok 690022



V. I. Kalinin
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Vladimir Ivanovich Kalinin. Leading Researcher, Doctor of Biological Sciences 

Prospect 100-let Vladivostoky, 159, Vladivostok 690022



References

1. Smirnov A.V. System of the class Holothuroidea // Paleontological Journal. 2012 V. 46, No. 8. P. 793–832.

2. Miller A.K., Kerr A.M., Paulay G. et al. Molecular phylogeny of extant Holothuroidea (Echinodermata) // Molecular Phylogenetics Evolution. 2017. V. 111. P. 110–131.

3. Beirne L., Fitzmier K., Miller M. Holothuroidea //. Biological Diversity. 2001. On-line. March 20, 2017. http://www.earlham.edu/~beirnlu/seacucumber.htm

4. Brusca R.C., Brusca G.J. Invertebrates (second edition). Sunderland, Massachusetts: Sinauer Associates Inc., 2003. 936 p.

5. Kitagawa I., Kobayashi M., Okamoto Y. et al. Structures of sarasinosides A 1, B1, and C1 – new norlanostane triterpenoid oligoglycosides from the Palanan marine sponge Sateropus sarasinosum // Chem. Pharm. Bull. 1987. V. 35, No. 12. P. 5036–5039.

6. Kobayashi M., Hori М., Каn К. et al. Marine natural products. XXVII. Distribution of lanostane – type triterpene oligoglycosides in 10 kinds of okinawan sea cucumbers // Chem. Pharm. Bull. 1991. V. 39, No. 9. P. 2282–2287.

7. Stonik V.A. Marine polar steroids // The Success of Chemistry 2001. V. 70, No. 8. P. 763–807 (in Russian).

8. Kalinin V.I., Ivanchina N.V., Krasokhin V.B. et al. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles // Mar. Drugs. 2012. V. 10. P. 1671–1710.

9. Habermehl G., Volkwein G. Aglycones of the toxins from the cuvierian organs of Holothuria forskali and a new nomenclature for the aglycones from Holothurioidea // Toxicon. 1971. V. 9. No. 4. P. 319–326.

10. Avilov S.A., Kalinin V.I., Kalinivsky A.I., Stonik V.A. Cucumarioside G 2 – minor triterpene glycoside from the sea cucumber Eupentacta fraudatrix // Chemistry of Natural Compounds 1991. No. 3. P. 438–439 (in Russian).

11. Avilov S.A., Kalinovsky A.I., Stonik V.A. Two new triterpene glycosides from sea cucumber Duasmodactyla kurilensis // Chemistry of Natural Compounds. 1991. No. 2. P. 221–226 (in Russian).

12. Silchenko A.S., Kalinovsky A.I., Avilov S.A. et al. Fallaxosides B 1 and D3, triterpene glycosides with novel skeleton types of aglycones from the sea cucumber Cucumaria fallax // Tetrahedron. 2017. V. 73. P. 2335–2341.

13. Kalinin V.I., Levin V.S., Stonik V.A. Chemical morphology: triterpene glycosides of sea cucumbers (Holothurioidea, Echinodermata). Vladivostok: Dalnauka, 1994. 284 p. (in Russian).

14. Karlina A.E. Wast free technology of food and food supplements from cucumarias of the Far Eastern seas. Summary of the dissertation for obtaining of the research degree of candidate of technical sciences. Vladivostok, 2009. 24 p. (in Russian).

15. Matsuno T., Sakushika A., Takashi I. Seasonal variations of saponin and its distribution in the body of seacucumber Stichopus japonicus // Bull. Jpn. Soc. Sci. Fisher. 1973. V. 39, № 3. P. 307–310.

16. Aminin D.L., Anisimov M.M. Contents of holotoxins in tissues of the sea cucumber Stichopus japonicus S. in different year season and their influence on oocytes maturation // Journal of Evol. Biochem. Physiol. 1987. V. 23, No. 4. P. 545–547. (in Russian).

17. Mitu S.A., Bose U., Suwansa-ard S. et al. Evidence for a saponin biosynthesis pathway in the body wall of the commercially significant sea cucumber Holothuria scabra // Mar. Drugs. 2017. V. 15. 349. P. 1–13.

18. Kalinin V.I., Aminin D.L., Avilov S.A., et al. Triterpene glycosides from sea cucucmbers (Holothurioidae, Echinodermata), biological activities and functions // Studies in Natural Product Chemistry (Bioactive Natural Products) / Ed. Atta-ur-Rahman. Amsterdam: Elsevier Sci. Publ., 2008. V. 35. Chap. 4. P. 135–196.

19. Frey D.G. The use of sea cucumbers in poisoning fishes // Copeia. 1951. P. 175–176.

20. Van Dyck S., Gerbaux P., Flammang P. Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean // Mar. Drugs. 2010. V. 8. P. 173–189.

21. Zenkevich L.A. (ed.) Animal life. V. 2. Invertebrates. Moscow: Education, 1971. P. 239. (in Russian).

22. Van Dyck S., Caulier G., Todesco M. et al. The triterpene glycosides of Holothuria forskali: Usefulness and efficiency as a chemical defense mechanism against predatory fish // J. Exp. Biol. 2011. V. 214, No. 8. P. 1347–1356.

23. Nigrelli R.F. The effects of holothurin on fish and mice with sarcoma 180 // Zoologica (New York). 1952. V. 37. P. 89–90.

24. Yamanouchi T. On the poisonous substance contained in holothurians // Publ. Seto Mar. Biol. Lab. 1955. V. 4, No. 2–3. P. 183–203.

25. Nigrelli R.F., Jakowska S. Effects of holothurin, a steroid saponin from the Bahamian sea cucumber (Actinopyga agassizi), on various biological systems // Ann. N.Y. Acad. Sci. V. 90. P. 884–892.

26. Friess S.L., Standaert F.G., Whitcomb E.R. et al. Some pharmacologic properties of holothurin, an active neurotoxin from the sea cucumber // Pharmacol. Exp. Therap. 1959. V. 126. P. 323–329.

27. Polikarpova S.I., Volkova O.N., Sedov A.M. et al. Cytogenetic investigation of mutagenesity of cucumarioside // Genetika. 1990. V 26, No. 9. P. 1682–1684 (in Russian).

28. Thron C.D. Hemolysis by holothurin A, digitonin and quiiaia saponin: estimates of the requared cellular lysin uptakes and free lysin concentrations // J. Pharm. Exp. Therap. 1964. V. 145, No. 2. P. 194–202.

29. Jakowska S., Nigrelli R.F., Murray P.M., Veltry A.M. Hemopoetic effect of holothurin, steroid saponin from sea cucumber Actinopyga agassizi on Rana pipiens // Anat. Rec. 1958. V. 132. P. 459.

30. Poscidio G.N. The mutagenicity potential of holothurin of some Philippine holothurians // Philipp. J. Sci. 1983. V. 112. P. 1–12.

31. Kalinin V.I., Volkova O.V., Likhatskaya G.N. et al. Hemolytic activity of triterpene glucosides from the Cucumariidae family holothurians and evolution of this group of toxins // J. Nat. Toxins. 1992. V. 1, No. 2. P. 17–30.

32. Kalinin V.I., Prokofieva N.G., Likhatskaya G.N. et al. Hemolytic activities of triterpene glycosides from the holothurian order Dendrochirotida: Some trends in the evolution of this group of toxins // Toxicon. 1996. V. 34. No. 4. P. 475–483.

33. Aminin D.L., Pislyagin E.A., Menchinskaya E.S. et al. Immunomodulatory and anticancer activity of sea cucumber triterpene glycosides // Studies in Natural Product Chemistry (Bioactive Natural Products) / Ed. Atta-urRahman. Amsterdam: Elsevier Sci. Publ., 2014. V. 41. Chap. 3. P. 75–94.

34. Aminin D.L., Menchinskaya E.S., Pisliagin E.A. et al. Anticancer activity of sea cucumber triterpene glycosides // Marine Drugs. 2015. V. 13. P. 1202–1223.

35. Aminin D.L., Menchinskaya E.S., Pislyagin E.A. et al. Sea cucumber triterpene glycosides as anticancer agents // Studies in Natural Product Chemistry (Bioactive Natural Products) / Ed. Atta-ur-Rahman. Amsterdam: Elsevier Sci. Publ., 2016. V. 49. Chap. 2. P. 55–105.

36. Friess S.L., Duran R.C., Chanley J.D., Mezzetti T. Some structural requirements underlying holothurin A interactions with synaptic chemoreceptors // Biochem. Pharmacol. 1965. V. 14. P. 1237–1247.

37. Friess S.L., Durant R.C., Chanley J.D., Fash F.J., Role of the sulphate charge center in irreversible interactions of holothurin A with chemoreceptors // Biochem. Pharmacol. 1967. V. 16. P. 1617–1625.

38. Friess S.L., Durant R.C., Chanley J.D. Further studies on biological actions of steroidal saponins produced by poisonous echinoderms // Toxicon. 1968. V. 6. P. 81–84.

39. Friess S.L., Chanley J.D., Hudak W.V., Weems H.B. Interaction of the Echinoderm toxin Holothurin A and its desulfated derivative with the cat superior cervical ganglion preparation // Toxicon. 1970. No. 8. P. 211–219.

40. De Groof R.C., Narahashi T. The effects of holothurin A on the resting membrane potential and conductance of squid axon // Europ. J. Pharmacol. 1976. V. 36. P. 337–346.

41. Dettbarn W.D., Higman H.B., Bartels E., Podleski T. Effects of marine toxins on electrical activity and K+ efflux of excitable membranes // Biochem. Biophys. Acta. 1965. V. 94. P. 472–478.

42. Ruggieri C.D., Nigrelli R.F. Physiologically active substances from Echinoderms // Bioactive compounds from the sea / Eds. Humm, H.J., Lane C.H. N.-Y.: Dekker Inc., 1974. P. 183–195.

43. Kaul P.N., Daffari P. Marine pharmacology: bioactive molecules from the sea // Ann. Rev. Pharmacol. Toxicol. 1986. V. 26. P. 117–142.

44. Verbist J.E. Pharmacological effects of compounds from echinoderms // Echinoderm studies. V. 4 / Eds. Jangoux M., Lawrence J.M. Rotterdam: A.A. Balkema, 1993. P. 111–186.

45. Gorshkov B.A., Gorshkova I.A., Stonik V.A., Elyakov G.B. Effect of marine glycosides on adenosine triphospatase activity // Toxicon. 1982. V. 20, No. 3. P. 655–658.

46. Gorshkova I.A., Gorshkov B.A., Stonik V.A. Inhibition of rat brain Na+-K+-ATPase by triterpene glycosides from holothurians // Toxicon. 1989. V. 27, No. 8. P. 927–936.

47. Gorshkova I.A., Kalinovsky A.I., Ilyin S.G. et al. Physicochemical characteristics of interaction of toxic triterpene glycosides from holothurians with rat brain Na+-K+-ATPase // Toxicon. 1989. V. 27, No. 8. P. 937–945.

48. Gorshkova I.A., Kalinin V.I., Gorshkov B.A., Stonik V.A. Two different modes of inhibition of the rat brain Na+-K+-ATPase by triterpene glycosides, psolusosides A and B, from the holothurian Psolus fabricii // Comp. Biochem. Physiol. 1999. V. 122, No. 1. P. 101–108.

49. Gorshkova I.A., Ilyin S.G., Stonik V.A. Physicochemical characteristics of interaction of saponins from holothurians (sea cucumber) with cell membranes // Saponin in food, feedstuffs and medicinal plants / Eds.Oleszek W., Marston A. Kluwer Academic Publ., 2000. P. 219–225.

50. Kitagawa I., Kobayashi M., Inamoto T. et al. Marine natural products. XIV. Structures of echinosides A and B, antifungal lanostane-oligosides from the sea cucumber Actinopyga echinites (Jaeger) // Chem. Pharm. Bull. 1985. V. 33, No. 12. P. 5214–5224.

51. Rubtsov V.B., Ruzhnitsky A.O., Klebanov G.I. et al. Influence of some triterpene glycosides of marine invertebrates on permeability of biological and artificial membranes // Izv. AN SSSR. Ser. Biol. 1980. No. 3. P. 436–445.

52. Kuznetsova T.A., Anisimov M.M., Popov A.M. et al. Comparative study in vitro of physiological activity of triterpene glycosides of marine invertebrates of Echinoderm type // Comp. Biochem. Physiol. 1982. V. 73. P. 41–43.

53. Maltsev I.I., Stekhova S.I., Shchentsova E.B., Anisimov M.M., Stonik V.A. Antimicrobial activity of glycosides from sea cucumebrs of the family Stichopodidae // Khim. Pharm. Zhurn. 1985. No. 1. P. 54–56 (in Russian).

54. Olsen R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. Role of the sterol contents of some fungi // Physiol. Plant. 1973. V. 28. P. 507–515.

55. Olsen R.A. Triterpene glycosides as inhibitors of fungal growth and metabolism. The effect of aescin on fungi with reduced sterol contents // Physiol. Plant. 1973. V. 29. P. 145–149.

56. Popov A.M., Loenko Yu.N., Anisimov M.M. The change of sensibility of tumor cells againt the action of triterpene glycosides by liposoms // Antibiotiki. 1981. V. 26, No. 3. P. 127–129 (in Russian).

57. Popov A.M., Kaliniovska N.I., Kuznetsova T.A. et al. Role of sterols in membranotropic activity of triterpene glycosides // Antibiotiki. 1983. No. 9. P. 656–659 (in Russian).

58. Popov A.M. The studies of membranotropic activities of some triterpene glycosides: sCand. Diss. Biol. Sci., Summary. Vladivostok, 1984. 24 p. (in Russian).

59. Likhatska G.N., Jarovaya T.P., Rudnev V.S. et al. Formation of the complex of triterpene glycoside holothurine A with cholesterol in liposomal membranes // Biofizika. 1985. V. 30, No. 2. P. 358–359 (in Russian).

60. Likhatska G.N. Triterpene and steroid glycosides and membranes. Molecilar mechanisms of interaction of glycosides with membranes. Saarbrucken: LAP LAMBERT Academic Publ. KG, 2011. 115 p.

61. Likhatska G.N. Mekhanisms of interaction of triterpene and steroid glycosides with lipid membranes. Cand. Diss. Phys.- Math. Sci., Summary. Vladivostok, 2006. 23 p. (in Russian).

62. Anisimov M.M. Triterpene glycosides and structural-functional properties of membranes // Biol. Nauki. 1987. No. 10. P. 49–63.

63. Anisimov M.M., Aminin D.L., Rovin Yu.G. et al. On resistibility of cells of the sea cucumber Stichopus japonicus against action of endotoxin – stichoposide А // Dokl. AN SSSR. 1983. V. 270, No. 4. P. 991–993 (in Russian).

64. Aminin D.L., Anisimov M.M., Mokretsova N.D. et al. Influence of triterpene and steroid glycosides on ovocites, eggs and embryous of the sea cucumber Stichopus japonicus and sea urchin trongylocentrorus nudus // Biol. Morya. 1986. No. 3. P. 49–52 (in Russian).

65. Claereboudt E.J.S., Eeckhaut I., Lins L., Deleu M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers // Scientific Reports. 2018. V. 8. 10845. P. 1–11.

66. Aminin D.L. Immunomodulatory properties of sea cucumber triterpene glycosides // Marine and Freshwater Toxins. Toxinology / Eds. Gopalakrishnakone P., Haddad Jr. V., Tubaro A. et al. Springer: Amsterdam. Netherlands, 2016. Chap. 19. P. 381–401.

67. Aminin D., Pislyagin E., Astashev M. et al. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors // Sci. Rep. 2016. V. 6. 39683. P. 1–11.

68. Aminin D.L., Agafonova I.G., Berdyshev E.V. et al. Immunomodulatory properties of cucumariosides from the edible Far-Eastern holothurian Cucumaria japonica // J. Med. Food. 2001. V. 4, No. 3. P. 127–135.

69. Aminin D.L., Agafonova I.G., Kalinin V.I. et al. Immunomodulatory properties of frondoside A, a major triterpene glycoside from the North Atlantic commercially harvested sea cucumber Cucumaria frondosa // J. Med. Food. 2008. V. 11, No. 3. P. 443–453.

70. Pislyagin E.A., Gladkikh R.V., Kapustina I.I. et al. Interaction of holothurian triterpene glycoside with biomembranes of mouse immune cells // Int. Immunopharmacol. 2012. V. 14. P. 1–8.


Review

For citations:


Aminin D.L., Kalinin V.I. Toxic properties of holothurian’s triterpene glycosides. Journal of NBC Protection Corps. 2019;3(1):23-39. (In Russ.) https://doi.org/10.35825/2587-5728-2019-3-1-23-39. EDN: xohphs

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)