Preview

Journal of NBC Protection Corps

Advanced search

The Use of Avian Yolk Antibodies in the Inactivation of Highly Toxic Components of Biological Weapons and Especially Dangerous Infections

https://doi.org/10.35825/2587-5728-2022-6-2-137-151

EDN: bhuobi

Abstract

Currently, Western pharmaceutical companies have mastered the production of licensed drugs based on transovarial chicken specific antibodies (IgY antibodies) intended for the treatment and prevention of infections caused by Helicobacter pylori, influenza virus and other pathogens. Of particular interest is the possibility of using IgY antibodies as an inexpensive specific antidote for emergency specific prevention of infections caused by pathogens of dangerous and especially dangerous infections. The purpose of this work is to summarize the results of studies that have shown a high therapeutic potential of transovarial specific immunoglobulins in the treatment and prevention of dangerous viral, bacterial infections and injuries by biological toxins – potential agents of biological weapons (BW). The advantage of using IgY technologies for passive immunization is a non-invasive method for obtaining antibodies, as well as a large amount of them – 20–30 g of immunoglobulins, which can be obtained from one laying hen per year. An important advantage of IgY over immunoglobulins derived from mammalian serum is that they do not interact with complement components, nor with rheumatoid factor, nor with Fc receptors of mammalian immunocompetent cells, which significantly reduces the manifestation of adverse reactions, in particular, antibody-dependent enhancement of infection (ADE). Experiments carried out in vivo and in vitro showed a high activity of IgY antibodies in suppressing the damaging effect of pathogens of especially dangerous infections and biological toxins. It is shown in the article, that the replacement of mammalian IgG with avian transovarial IgY allows obtaining commercially significant amounts of thermostable specific antibodies that do not cause ADE, and expands the possibilities of methods for specific prevention and treatment of lesions caused by viruses, bacteria, and toxins – potential agents of biological weapons.

About the Author

V. S. Kaplin
Federal Research Center Fundamental and Translational Medicine, Research Institute of Biochemistry
Russian Federation

Vladimir Sergeevich Kaplin. Senior Researcher of the Department. Candidate of Biological Sciences.

Timakova st. 2, Novosibirsk 630117



References

1. Sandakhchiev L.S., Martynyuk R.A. The need for international cooperation for success in combating infectious diseases and bioterrorism // Chemical and Biological Safety. 2004. №. 1–2. С. 13–14 (in Russian).

2. Merinova O.A., Toporkov A.V., Merinova L.K. et al. Biological safety: analysis of the current state of training in the Russian Federation // Journal of Microbiology, Epidemiology and Immunobiology. 2018. №. 3. С. 87–96 (in Russian).

3. Ramasamy S., Liu C.Q., Tran H. et al. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. // British journal of pharmacology. 2010. V. 161. № 4. P. 721-748. https://doi.org/10.1111/j.1476-5381.2010.00939.x

4. Bebring E., Kitasato S. Ueber das Zustandekommen der DiphtherieImmunitgt und der Tetanus-Immunitzt bei Thieren. // 1890. Deutscbe Medizhiscbe Wocbenschift, V. 16. P. 1113-1114. https://doi.org/10.17192/eb2013.0164

5. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity // Nature. 1975. V. 256. №. 5517. P. 495-497. https://doi.org/10.1038/256495a0

6. Froude J.W., Stiles, B.G., Pelat T., Thullier P. Antibodies for biodefense. // MAbs. – Taylor & Francis. 2011. V 3. № 6. P. 517-527. https://doi.org/10.4161/mabs.3.6.17621

7. Hu W.G., Nagata L.P. Opportunities and challenges of therapeutic monoclonal antibodies as medical countermeasures for biodefense // J. Bioterrorism Biodefense. 2016. V. 7. P. 1000149. https://doi.org/10.4172/2157-2526.1000149

8. Klemperer F. Archiv für experimentelle pathologie und pharmakologie // Ueber Natürliche Immunität Und Ihre Verwerthung Für Die Immunisirungstherapie. 1893. V. 31. P. 356-382. https://doi.org/10.1007/BF01832882

9. Mechnikov I.I. Immunity in infectious diseases // I.I. Mechnikov. Moscow, 1903. 519 р. (in Russian).

10. Dzerzhgovsky S.K. On the question of heredity of artificial immunity against diphtheria. S.K. Dzerzhgovsky // Archives of Biological Sciences. VOL. VIII. V. 1–5. St. Petersburg. 1901. P. 421-432 (in Russian).

11. Zhang X.Y. et al. IgY-Technology: Production and Application of Egg Yolk Antibodies. Springer International Publishing, 2021. https://link.springer.com/book/10.1007/978-3-030-72688-1

12. Kaplin V.S., Kaplina, O.N. IgY-technologies. Avian yolk antibodies // Biotechnology. 2017. Т. 33. № 2. С. 29–40. https://doi.org/10.21519/0234-2758-2017-33-2-29-40 (in Russian).

13. Karachaliou C.E., Vassilakopoulou V., Livaniou E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules // World Journal of Methodology. 2021. V. 11. № 5. P. 243. https://doi.org10.5662/wjm.v11.i5.243

14. Wu R., Yakhkeshi S., Zhang X. Scientometric analysis and perspective of IgY technology study // Poultry Science. 2022. P. 101713. https://doi.org/10.1016/j.psj.2022.101713

15. Polson A., von Wechmar M.B., Van Regenmortel M.H. Isolation of viral IgY antibodies from yolks of immunized hens //Immunological communications. 1980. V. 9. №. 5. P. 475–493. https://doi.org/10.3109/08820138009066010

16. Hussain C.N. Isolation and Estimation of Chicken Immunoglobulins (IgY) from Egg Yolk by Optimizing Polyethylene Glycol (PEG) Precipitation Method //Scholars Journal of Agriculture and Veterinary Sciences. 2017. V. 4. P. 286–292. https://doi.org/10.21276/sjavs

17. Pauly D., Dorner M., Zhang X. et al. Monitoring of laying capacity, immunoglobulin Y concentration, and antibody titer development in chickens immunized with ricin and botulinum toxins over a two-year period // Poultry Science. 2009. V. 88. № 2. P. 281–290. https://doi.org/10.3382/ps.2008-00323

18. You Z., Yang H., Xin W. et al. Preparation of egg yolk antibodies against BoNT/B and their passive protection in mouse models // Human vaccines & immunotherapeutics. 2014. V.10, № 8. P. 2321–2327. https://doi.org/10.4161/hv.29433

19. Fast D., Schlievert P., Nelson R. Toxic shock syndrome-associated staphylococcal and streptococcal pyrogenic toxins are potent inducers of tumor necrosis factor production // Infect Immun. 1989. V. 57. P 291– 294. https://doi.org/10.1128/iai.57.1.291-294.1989.

20. Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives // Science. 1990. V. 248, №. 4956. P. 705–711. https://doi.org/10.1126/science.2185544

21. Ulrich R.G., Bavari S., Olson M.A. Bacterial superantigens in human disease: structure, function and diversity // Trends in microbiology. 1995. V. 3. № 12. P. 463–468. https://doi.org/10.1016/s0966-842x(00)89011-3.

22. Fraser J., Arcus V., Kong P. et al. Superantigens– powerful modifiers of the immune system. // Molecular medicine today. 2000. V. 6. № 3. P. 125–132. https://doi.org/10.1016/S1357-4310(99)01657-3

23. LeClaire R.D., Hunt R.E., Bavari S. Protection against bacterial superantigen staphylococcal enterotoxin B by passive vaccination. // Infection and immunity. 2002. V. 70. № 5. P. 2278–2281. https://doi.org/10.1128/IAI.70.5.2278-2281.2002

24. Lee S., Lee S.R., Jung K.M., Kim J.W. Production of Immunospecific Egg Yolk Antibody with Recombinant Staphylococcal Enterotoxin B (SEB) Protein. // Korean Journal of Poultry Science. 2012. V. 39, № 4. P. 273–278. https://doi.org/10.5536/KJPS.2012.39.4.273

25. Zhang X.Y., Kurth A., Pauly D. et al. Application of high-titred IgY antibodies in orthopox virus diagnostics // J. Chin. Pharm. Sci. 2008. V. 17. P. 183– 191.

26. Yue C. Präventions-und Therapiestrategien gegen Orthopockenviren. 2013. https://doi.org/10.25646/5289

27. Kaplin V.S., Zaikovskaya A.V., Kaplina O.N. et al. Chicken yolk antibodies – a promising drug for immunotherapy // In: Days of immunology in Siberia: materials of XII All-Russian Scientific-Practical Conference with international participation / Eds Academician of the Russian Academy of Sciences, Prof. Kozlov V.A., Prof. Smirnova S.V. Novosibirsk, Krasnoyarsk. 2015. Р. 93-94. (in Russian).

28. Pal P. Role of cholera toxin in Vibrio cholerae infection in humans-A Review // International Letters of Natural Sciences. 2014. V. 22. P. 22–32. https://doi.org/10.18052/www.scipress.com/ILNS.22.22

29. Bespalova I.A., Ivanova I.A., Omelchenko N.D., Filippenko A.V., Trufanova A.A. Modern state of specific prevention of cholera. // Epidemiology and vaccine prophylaxis. 2018. V. 17. Р. 55–61 (in Russian).

30. Abbas A.T., El-Kafrawy S.A., Sohrab S.S., Azhar E.I.A. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. // Human vaccines & immunotherapeutics. 2019. V. 15. № 1. P. 264–275. https://doi.org/10.1080/21645515.2018.1514224

31. Zhang Y., Wei Y., Li Y. et al. IgY antibodies against Ebola virus possess post-exposure protection in a murine pseudovirus challenge model and excellent thermostability // PLoS Neglected Tropical Diseases. 2021. V. 15. e0008403. https://doi.org/10.1371/journal.pntd.0008403

32. Hirai K., Arimitsu H., Umeda K. et al. Passive oral immunization by egg yolk immunoglobulin (IgY) to Vibrio cholerae effectively prevents cholera // Acta Medica Okayama. 2010. V. 64. P. 163–170. https://doi.org/10.18926/AMO/40008

33. Megha P.U., Sentila R., Michael A. Generation and Characterization of specific Chicken Egg Yolk Antibodies (IgY) against microbial bio-terroristic Agent (Vibrio cholerae) // Research Journal of Animal, Veterinary and Fishery Sciences. 2014. V. 2. P. 9–12.

34. Barati B., Ebrahimi F., Nazarian S. Production of chicken egg yolk antibody (IgY) against recombinant cholera toxin B subunit and evaluation of its prophylaxis potency in mice // Iranian Journal of Immunology. 2018. V. 15. P. 47–58. https://pubmed.ncbi.nlm.nih.gov/29549232/

35. Akbari M. R., Ahmadi A., Mirkalantari S., Salimian J. Anti-Vibrio cholerae IgY Antibody Inhibits Mortality in Suckling Mice Model // Journal of the National Medical Association. 2018. V. 110. P. 84–87. https://doi.org/10.1016/j.jnma.2017.04.001

36. Taheri F., Nazarian S., Ahmadi T.S., Gargari S.L. Protective effects of egg yolk immunoglobulins (IgYs) developed against recombinant immunogens CtxB, OmpW and TcpA on infant mice infected with Vibrio cholerae // International Immunopharmacology. 2020. V. 89. P. 107054. https://doi.org/10.1016/j.intimp.2020.107054

37. Levine M.M. Monoclonal antibody therapy for Ebola virus disease // New England Journal of Medicine. 2019. V. 381. P. 2365–2366. https://www.nejm.org/doi/full/10.1056/NEJMe1915350

38. Zhang Y., Wei Y., Li Y. et al. IgY antibodies against Ebola virus possess post-exposure protection in a murine pseudovirus challenge model and excellent thermostability // PLoS Neglected Tropical Diseases. 2021. V. 15. № 3. e0008403. https://doi.org/10.1371/journal.pntd.0008403

39. Mironov A.N., Supotnitskiy M.V., Lebedinskaya E.V. The phenomenon of antibodydependent enhancement of infection in vaccinated and convalescents // Biopreparats (Biopharmaceuticals). 2013. No. 3. P. 12–25 (in Russian).

40. Agumadu V. C., Ramphul K. Zika virus: a review of literature //Cureus. 2018. V. 10. https://doi. org/10.7759/cureus.3025

41. Rodenhuis-Zybert I.A., Wilschut J., Smit J.M. Dengue virus life cycle: viral and host factors modulating infectivity // Cellular and molecular life sciences. 2010. V. 67. P. 2773–2786. https://doi.org/10.1007/s00018-010-0357-z.

42. Balsitis S.J., Williams K.L., Lachica R. et al. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification // PLoS pathogens. 2010. V. 6. https://doi.org/10.1371/journal.ppat.1000790

43. Fink A.L., Williams K.L., Harris E. et al. Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement // PLoS neglected tropical diseases. 2017. V. 11. https://doi.org/10.1371/journal.pntd.0005721

44. Kaplina O.N., Kaplin V.S. Use of avian yolk antibodies (IgY) for passive immunization of farm and domestic animals. // Veterinary medicine of Kuban. 2018. № 4. P. 19–23 (in Russian).

45. Wang Q., Yang Y.A.N.G., Zheng H. et al. Genetic and biological characterization of Zika virus from human cases imported through Shenzhen Port // Chinese Science Bulletin. 2016. V. 61. P. 2463–2474. https://www.sciengine.com/CSB/article?doi=10.1360/N972016-00665&scroll=

46. Williams K.L., Sukupolvi-Petty S., Beltramello M. et al. Therapeutic efficacy of antibodies lacking FcγR against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies // PLoS pathogens. 2013. V. 9. № 2. e1003157. https://doi.org/10.1371/journal.ppat.1003157

47. O’Donnell K.L., Meberg B., Schiltz J. et al. Zika virus-specific IgY results are therapeutic following a lethal zika virus challenge without inducing antibodydependent enhancement // Viruses. 2019. V. 11. P. 301. https://doi.org/10.3390/v11030301

48. Rota P.A., Oberste M.S., Monroe S.S. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome // Science. 2003. V. 300. P. 1394–1399. https://doi.org/10.1126/science.1085952

49. Fu C.Y., Huang H., Wang X.M. et al. Preparation and evaluation of anti-SARS coronavirus IgY from yolks of immunized SPF chickens // J. Virol. Methods. 2006. V. 133. P. 112–115. https://doi.org/10.1016/j.jviromet.2005.10.027

50. Abbas A.T., El-Kafrawy S.A., Sohrab S.S. et al. Anti-S1 MERS-COV IgY specific antibodies decreases lung inflammation and viral antigen positive cells in the human transgenic mouse model // Vaccines. 2020. V. 8. P. 634. doi: https://doi.org/10.3390/vaccines8040634

51. Cunha L.E.R., Stolet A.A., Strauch M.A. et al. Potent neutralizing equine antibodies raised against recombinant SARS-CoV-2 spike protein for COVID-19 passive immunization therapy // bioRxiv. 2020. https://doi.org/10.1101/2020.08.17.254375

52. Pan X., Zhou P., Fan T. et al. Immunoglobulin fragment F (ab’) 2 against RBD potently neutralizes SARS-CoV-2 in vitro // Antiviral research. 2020. V. 182. https://doi.org/10.1016/j.antiviral.2020.104868

53. Jingchen W., Yunfei L., Ying R. et al. A chicken IgY can efficiently inhibit the entry and replication of SARS-CoV-2 by targeting the ACE2 binding domain in vitro // bioRxiv preprint: https://doi.org/10.1101/2021.02.16.430255

54. Wei S., Duan S., Liu X. et al. Chicken Egg Yolk Antibodies (IgYs) block the binding of multiple SARS-CoV-2 spike protein variants to human ACE2 // International immunopharmacology. 2021. V. 90. P. 107172. https://doi.org/10.1016/j.intimp.2020.107172

55. Shen H., Cai Y., Zhang H. et al. Anti-SARSCoV-2 IgY isolated from egg yolks of hens immunized with inactivated SARS-CoV-2 for immunoprophylaxis of COVID-19 // Virologica Sinica. 2021. V. 36. P. 1080–1082. https://doi.org/10.1007/s12250-021-00371-1

56. Ge S., Wu R., Zhou T. et al. X. Specific anti-SARS-CoV-2 S1 IgY-scFv is a promising tool for recognition of the virus // AMB Express. 2022. V. 12. № 1. P. 1–12. https://doi.org/10.1186/s13568-022-01355-4


Review

For citations:


Kaplin V.S. The Use of Avian Yolk Antibodies in the Inactivation of Highly Toxic Components of Biological Weapons and Especially Dangerous Infections. Journal of NBC Protection Corps. 2022;6(2):137-151. (In Russ.) https://doi.org/10.35825/2587-5728-2022-6-2-137-151. EDN: bhuobi

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)