Evolution of means and principles of smallpox vaccination
https://doi.org/10.35825/2587-5728-2020-4-1-66-85
EDN: epwbfh
Abstract
There are several possible reasons for the return of smallpox as an endemic disease. For example, the possibility of maintaining smallpox virus in an active state in the corpses of the dead, buried in permafrost regions, or the evolutionary changes of orthopoxviruses with the appearance of more virulent strains. Since the eradication of smallpox, the requirements for smallpox vaccines have changed, leading to a change in the principles of smallpox vaccination. The purpose of the study is to review the evolution of means and principles of smallpox vaccination. For almost 200 years four generations of vaccine preparations have been developed. The first ones were the dermovaccines, i.e. the virus-containing detritus of calfskin. Then, chicken-embryo-skin cell cultures were used as a substrate for virus accumulation. The third generation were the vaccines based on vaccine strains at-tenuated by various methods. Fourth, DNA vaccines and subunit recombinant vaccines. One of the main contemporary principles of smallpox vaccination is safety (limited use of the vaccines of first and second generations, the development of next generations of vaccines, means and schemes of safe vaccination) while maintaining the requirements of efficiency equal to the existing vaccines. The replacement of epidemiologically tested vaccines with the third and fourth- generation drugs necessitated a comparative assessment of the protective efficacy and safety of new vaccines. It may be useful to carry out two-stage vaccination using inactivated or new safe nonreplicating the third and fourth generation vaccines at the first stage.
About the Authors
S. V. BorisevichRussian Federation
Sergey Vladimirovich Borisevich. Head of the FSBE «48 Central Scientific Research Institute». Doctor of Biological Sciences, Corresponding Member of RAS.
Oktyabrskiy Street 11, Sergiev Posad 141306
V. N. Podkuyko
Russian Federation
Valery Nikolayevich Podkuyko. Leading Researcher. Doctor of Medical Science.
Oktyabrskiy Street 11, Sergiev Posad 141306
A. P. Pirozhkov
Russian Federation
Aleksei Petrovich Pirozhkov. Leading Researcher. Candidate of Medical Sciences.
Oktyabrskiy Street 11, Sergiev Posad 141306
A. I. Terent'ev
Russian Federation
Aleksandr Ivanovich Terent'ev. Leading Researcher. Doctor of Biological Sciences.
Oktyabrskiy Street 11, Sergiev Posad 141306
V. P. Krasnyansky
Russian Federation
Vladimir Pavlovich Krasnyansky. Leading Researcher. Doctor of Biological Sciences
Oktyabrskiy Street 11, Sergiev Posad 141306
E. V. Rozhdestvensky
Russian Federation
Evgenii Vsevolodovich Rozhdestvensky. Head of the Scientific Research Department. Candidate of Medical Sciences
Oktyabrskiy Street 11, Sergiev Posad 141306
S. V. Nazarov
Russian Federation
Stanislav Viktorovich Nazarov. Senior Researcher.
Oktyabrskiy Street 11, Sergiev Posad 141306
S. V. Kuznecov
Russian Federation
Stanislav Viktorovich Kuznecov. Head of the Department. Doctor of Medical Sciences.
141306, Moscow, Frunzenskay Еmb. 22/2.
References
1. L'vov D.K., Zverev V.V., Ginzburg A.L. et al. Smallpox is a dormant volcano // Vopr. Virusol. 2008. № 4. Р. 36–41 (in Russian).
2. Marennikova S.S., Shchelkunov S.N. Pathogenic for humans poxviruses. M. 1998. 386 p. (in Russian).
3. Shchelkunov S.N., Shchelkunova G.A. We should be prepared to smallpox re-emergence // Vopr. Virusol. 2019. № 5. С. 206–214. https://doi.org//10.36233/0507-4088-2019-64-5-206-214 (in Russian).
4. Fenner F. Smallpox and its eradication. Geneva: World Health Organization, 1988. 1460 p.
5. Borisevich S.V., Marennikova S.S., Makhlai A.A.et al. Cowpox: features of spread after cancellation of mandatory pox immunization // Zhurn. Mikrobiol. 2012. № 3. Р. 103–107 (in Russian).
6. Borisevich S.V., Marennikova S.S., Stovba L.F. et al. Monkeypox: features of spread after cancellation of mandatory pox immunization // Zhurn. Mikrobiol. 2012. № 2. Р. 69–73 (in Russian).
7. Borisevich S.V., Marennikova S.S., Makhlai A.A. et al. Vaccine-like viruses: peculiarities of circulation in South America // Vopr. Virusol. 2014. № 2. Р. 10–14 (in Russian).
8. Nalca A., Rimoin A.W., Bavari S., Whitehouse C.A. Reemergence of monkeypox: prevalence, diagnostics, and countermeasures // Clin. Infect. Dis. 2005. V. 41. P. 1765– 1771. https://doi.org/10.1086/498155
9. Vorou R.M., Papavassiliou V.G., Pierroutsakos I.N. Cowpox virus infection: an emerging health threat // Curr. Opin. Infect. Dis. 2008. V. 21. P. 153–156. https://doi.org/10.1097/QCO.0b013e3282f44c74
10. Shchelkunov S.N. Is it possible to return smallpox? // Molekulyarnaya Meditsina. 2011. № 4. Р. 36–41 (in Russian).
11. Pennington H. Smalpox and bioterrorism // Bull. WHO. 2003. V. 81. P. 762–767.
12. Babkin I.V., Shchelkunov S.N. Molecular evolution poxviruses. // Genetika. 2008. № 8. Р. 1029-1044 (in Russian).
13. Esosito J.J., Sammons S.A., France A.M. et al. Genom sequence diversity and clues to the evolution of variola (smallpox) virus // Science. 2006. V. 313 (5788). P. 807–812. https://doi.org/10.1126/science.1125134
14. Li Y., Carroll D.S., Gardner S.N., Walsh M.C. et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records // Proc. Natl. Acad. Sci. USA. 2007. V.104 (40). P. 15787–15792. https://doi.org/10.1073/pnas.0609268104
15. Marennikova S.S. To the 30th anniversary of the global smallpox eradication // Zhurn. Mikrobiol. 2011. № 3. Р. 121–124 (in Russian).
16. Henderson D.A. Smallpox: the death of a disease. New York, 2009. 500 p.
17. Hopkins D.R. The greatest killer. Smallpox in history. Chicago, 2002. 550 p.
18. Babkin I.V., Babkina I.N. The origin of the variola virus // Viruses. 2015. V. 7 (3). P. 1100–1112. https://doi.org/10.3390/v7031100
19. Babkin I.V., Babkina I.N. A retrospective study of the orthopoxvirus molecular evolution // Infect. Genet. Evol. 2012. V. 12. P. 1597–1604. https://doi.org/10.1016/j.meegid.2012.07.011
20. Vasil'ev V.S. Immunization against smallpox: history and prospects // Zh. Grod. Med. Univer. 2009. № 3 (27). P. 20–22 (in Russian).
21. Petrov B.D. Tercentenary of the decree on smallpox (a page from the history of epidemiology) // Zhurn. Mikrobiol. 1981. № 6. P. 117–118 (in Russian).
22. Maksyutov R.A., Gavrilova E.V., Shchelkunov S.N. Development of current smallpox vaccines // Voprosy Virusol. 2011. № 6. Р. 5–8 (in Russian).
23. Voigt E.A., Kennedy R.B., Poland G.A. Defending against smallpox: a focus on vaccines // Expert Rev Vaccines. 2016. V. 15(9). P. 1197–1211. https://doi.org/10.1080/14760584.2016.1175305
24. Verardi P.H., Titong A., Hagen C.J. A vaccinia virus renaissance // Human Vaccines and Immunotherapeutic. 2012. V. 8. P. 961–970. https://doi.org/10.4161/hv.21080
25. Wizer I., Balicer R., Cohen D. An update on smallpox vaccine candidates and their role in bioterrorism related vaccination strategies // Vaccine. 2007. V. 25. P. 976–984. https://doi.org/10.1016/j.vaccine.2006.09.046
26. Murphy F.A., Osburn B.I. Adventitious agents and smallpox vaccine in strategic national stockpile // Emerg. Infefect. Dis. 2005. V. 11. P. 1086–1089. https://doi.org/10.3201/eid1107.050277
27. Andzhaparidze O.G., Chernos V.I. Research to improve smallpox vaccine: the contribution to the elimination of smallpox in the world // Vopr. Virusol. 1982. № 4. Р. 4–10 (in Russian).
28. Babkin I.V., Babkina I.N. A retrospective study of the orthopoxvirus molecular evolution // Infect. Genet. Evol. 2012. V. 12. P. 1597–1604. https://doi.org/10.1016/j.meegid.2012.07.011
29. Onishchenko G.G., Maksimov V.A., Vorob'ev A.A., Podkuiko V.N., Mel'nikov S.A. The relevance of the return to smallpox, problems and prospects // Vestnik RAMN. 2006. № 7. Р. 32–38 (in Russian).
30. Frey S. E., Newman F. K., Kennedy J. S. et al. Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and Dryvax® in healthy vaccinianaive adults // Vaccine. 2009. V. 27 (10). P. 1637–1644. https://doi.org/10.1016/j.vaccine.2008.11.079
31. Matsevich G.R. Inactivated smallpox vaccine. Vaccination issue and role of allergies in the vaccination process. Leningrad: 1969, P. 69–71 (in Russian).
32. Matsevich G.R., Svet-Moldavskaya I.A. Smallpox vaccine inactivated by gamma-rays: its antigenic and immunogenic properties // Vopr. Virusol. 1970. № 3. Р. 316–322 (in Russian).
33. Perekrest V.V., Movsesyants A.A., Mukhacheva A.V. et al. Preparations for the specific prevention of smallpox registered in Russian Federation // Biopreparaty. 2013. № 2. Р. 4–13 (in Russian).
34. Fogg C.N. Americo J.L., Lustug S. Adjuvantenhanced antibody response to recombinant proteins correlates with protection of mice and monkeys to orthopoxvirus challenges // Vaccine. 2007. V. 25. P. 2787– 2799. https://doi.org/10.1016/j.vaccine.2006.12.037
35. Fogg C., Lustig S., Whitbeck J.C. et al. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions // J. Virol. 2004. V. 78(19). P. 10230–10237. https://doi.org/10.1128/JVI.78.19.10230-10237.2004
36. Vorob'ev A.A., Podkuiko V.N., Mikhailov V.V., Makhlai A.A. Nonparenteral immunization methods against smallpox // Zhurn. Mikrobiol. 1996. № 5. Р. 117–121 (in Russian).
37. Vorob'ev A.A., Podkuiko V.N., Mikhailov V.V. Results of basic and applied investigations on oral immunization against smallpox // Zhurn. Mikrobiol. 2002. № 1. Р. 12–18 (in Russian).
38. Vorob'ev A.A., Podkuiko V.N., Maksimov V.A. Oral vaccination against smallpox (on the return of smallpox vaccination) // Vestn. RAMN. 2003. № 1. Р. 5–10 (in Russian).
39. Maksimov V.A., Mel'nikov S.A., Bektimirov T.A. et al. Selection and evaluation of immunogenicity and reactogenicity of the optimal immunizing dose TEOVak for primary immunization when testing vaccine in limited group of adults // Materials of the 6th interstate scientific-practical conference «Sanitary protection of the territory of the states-participants SNG: Problems of biological security and countering terrorism in modern conditions». Volgograd. 2005. Р. 257–258 (in Russian).
40. Mel'nikov S.A., Podkuiko V.N., Khamitov R.A. et al. Clinical studies of vaccine TEOVac under the conditions of remote revaccination // Zhurn. Mikrobiol. 2005. № 6. Р. 29–33 (in Russian).
41. Podkuiko V.N., Krasnyanskii V.P., Vorob'ev A.A. et al. Peroral immunization – a method for enhancing the safety of recombinant vector (the vaccinia virus) // Vestnik RAMN. 1993. № 2. Р. 39–45 (in Russian).
42. Kidokoro M., Tashiro M., Shida H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8 // Proс. Natl. Acad. Sci. USA. 2005. V. 102(11). P. 4152–4157. https://doi.org/10.1073/pnas.0406671102
43. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells // J. Gen Virol. 1998. V. 79(Pt 2). P. 347– 352. https://doi.org/10.1099/0022-1317-79-2-347.
44. Empig C., Kenner J.R., Perret-Gentil M. Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge // Vaccine. 2006. V. 24. P. 3686–3690. https://doi.org/10.1016/j.vaccine.2005.03.029
45. Vollmar J., Arndtz N., Eckl K.M. Safety and immunogenicity of «IMVAMUNE», a promising candidate as a third generation smallpox vaccine // Vaccine. 2006. V. 24 (12). P. 2065–2070. https://doi.org/10.1016/j.vaccine.2005.11.022
46. Vollmar J., Pokorny R., Rapp P. A randomized, double-blind, dose-finding phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate «Imvamune» // Vaccine. 2010. V. 28. P. 1209-1216.
47. Amara R.R., Nigam P., Sharma S. et al. Longlived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells // J. Virol. 2004. V. 78(8). P. 3811–3816.
48. Wyatt L.S., Earl P.L., Eller L.A., Moss B. Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge // Proc. Natl. Acad. Sci. USA. 2004. V. 101(13). P. 4590–4595. https://doi.org/10.1073/pnas.0401165101
49. Sergeev A.A., Sergeev A.N. et al. Reaktogenicity, safety and immunogenicity of a recombinant bivaccine against smallpox and hepartitis B in limited clinical trials // Vopr. Virusol. 2004. № 5. Р. 22–26 (in Russian).
50. Maksytov R.A., Yakubitskiy S.N., Kolosova I.V., Shchelkunov S.N. Comparing new-generation candidate vaccines against human orthopoxvirus infections // Acta Naturae. 2017. V. 9. P. 88–93.
51. Yakubitskiy S.N., Kolosova I.V., Maksytov R.A., Shchelkunov S.N. Attenuation of vaccinia virus // Acta Naturae. 2015. V. 7. P. 113–121.
52. Tartaglia J., Perkus M.E., Taylor J. et al. NYVAC: a highly attenuated strain of vaccinia virus // Virology. 1992. V. 188. P. 217–232.
53. Doria-Rose N.A., Haigwood N.L. DNA vaccine strategies: candidates for immune modulation and immunization regimens. // Methods. 2003. V. 31. P. 207–216.
54. Hooper J.W., Custer D.M., Thompson E. Fourgene- combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicit appropriate antibody responses in nonhuman primates // Virology. 2003. V. 306. P. 181–195.
55. Otero M., Calarota S.A, Dai A. et al. Efficacy of novel plasmid DNA encoding vaccinia antigens in improving currernt smallpox vaccination strategy // Vaccine. 2006. V. 24(21). P. 4461–4470. https://doi.org/10.1016/j.vaccine.2005.08.010
56. Pulford D.J., Gates A., Bridge S.H. et al. Differential efficacy of vaccinia virus envelope proteins administered by DNA: minimisation in protection of BALB/c mice from a lethal intranasal poxvirus challenge // Vaccine. 2004. V. 22(25-26). P. 3358–3366. https://doi.org/10.1016/j.vaccine.2004.02.034
57. Phelps A., Gates A.J., Hillier M. et al. Comparative efficacy of replicating smallpox vaccine strains in a мurine сhallenge мodel // Vaccine. 2005. V. 23(27). P. 3500-3507. https://doi.org/10.1016/j.vaccine.2005.02.005
58. Berhanu A., Wilson R.L., Kirkwood-Watts D.L. Vaccination of BALB/mice with Escherichia coli – expressed vaccinia virus proteins A27L, B5R, and D8L protects mice from lethal vaccinia virus challenge // J. Virol. 2008. V. 82. P. 3517–3529. https://doi.org/10.1128/JVI.01854-07
59. Crotty S., Feigner P., Davies H. et al. Cutting edge: long-term В cell memory in humans after smallpox vaccination // J. Immunol. 2003. V. 171(10). P. 4969–4973.
60. Borisevich S.V., Mikhailov V.V., Bektimirov T.A., Perekrest V.V., Makhlai A.A., Podkuiko V.N. Assessment of the possibility of using vaccine virus strains to construct a recombinant AIDS vaccine on their basis // Russkii zhurnal «VICh SPID i rodstvennye problemy». 2001. № 2. Р. 72–87 (in Russian).
61. Plyasunov I.V., Sergeev A.N., Sergeev A.A. et al. Clinical trials of oral recombinant bivaccine against variola and hepatitis B during double vaccination // Vopr. Virusol. 2006. № 2. Р. 31–35 (in Russian).
Review
For citations:
Borisevich S.V., Podkuyko V.N., Pirozhkov A.P., Terent'ev A.I., Krasnyansky V.P., Rozhdestvensky E.V., Nazarov S.V., Kuznecov S.V. Evolution of means and principles of smallpox vaccination. Journal of NBC Protection Corps. 2020;4(1):66-85. (In Russ.) https://doi.org/10.35825/2587-5728-2020-4-1-66-85. EDN: epwbfh