Новый коронавирус SARSCoV-2 в аспекте глобальной эпидемиологии коронавирусных инфекций
https://doi.org/10.35825/2587-5728-2020-4-1-32-65
EDN: wlahac
Аннотация
Новый коронавирус SARSCoV-2 в аспекте глобальной эпидемиологии коронавирусных инфекций Кажущееся неожиданным появление в КНР и затем глобальное распространение SARSCoV-2 заставляет задуматься о коронавирусной угрозе, исходящей из природных очагов, на территории нашей страны. Цель работы – рассмотреть SARS-CoV-2 в аспекте глобальной эпидемиологии коронавирусных инфекций. При подготовке статьи в основном использовались данные китайских ученых, опубликованные в англоязычных научных журналах. Их анализ показал широкое распространение вирусов данного таксона среди летучих мышей и ежей, в том числе в природных экосистемах Европы. До настоящего времени промежуточный между летучими мышами и человеком вид-хозяин SARS-CoV-2 и промежуточный вид коронавируса – прямой предшественник SARS-CoV-2, не обнаружены. Основная часть генома коронавирусов консервативна, однако он легко поддается генетическим рекомбинациям в естественных условиях, так что вирус может быть перенацелен как в естественных, так и в искусственных условиях с диких животных на человека путем изменения структуры белка S1. Патогенез коронавирусных инфекций у человека, вызывающих тяжелый острый респираторный синдром (SARS), складывается из этапов специфического узнавания вирусом рецепторов на клетках-мишенях в нижних отделах легких, проникновения в клетку-мишень, размножения, генерирования сначала цитокинового шторма, разрушающего нижние отделы легких, затем – феномена антитело-зависимого усиления инфекции, приводящего к изменению тропности вируса и его генерализации в организме человека. Вирулентность для человека у SARS-CoV-2 значительно ниже, чем у коронавирусов, вызвавших SARS в 2002–2003 гг. в Китае и ближневосточный респираторный синдром на Ближнем Востоке в 2012 г. Однако благодаря более высокой устойчивости при проникновении в эндосомы клетки и эффективной работе репликационно-транскрипционного комплекса, обеспечивается его размножение до количеств, позволяющих ему передаваться от больных людей здоровым. Разные этнические группы могут иметь разную чувствительность к SARS-CoV-2 и отличия в клинической симптоматике, что связано с количеством рецепторов ACE2 на поверхности пневмоцитов II типа, энтероцитов кишечника и сосудистого эндотелия других органов. В статье также приведены клинические наблюдения, сделанные китайскими исследователями во время вспышки коронавирусной инфекции, вызванной SARS-CoV-2. Ими высказано мнение, что эффективная и своевременная диагностика COVID-19 возможна при сочетании молекулярно-диагностических методов обнаружения SARS-CoV-2 с обнаружением характерных пневмонических очагов компьютерной томографией. Несмотря на все трудности борьбы с новой пандемией, она стала той встряской, которая сделала Россию более сильной в противоэпидемическом отношении.
Об авторе
М. В. СупотницкийРоссия
Супотницкий Михаил Васильевич. Главный специалист, канд. биол. наук, ст. науч. сотр.
г. Москва, Бригадирский переулок, д. 13
Список литературы
1. Berry D.M., Cruicktank J.G., Chu H.P., Dells R.H.J. The structure of infectious bronchitis virus // Virology. 1964. V. 23. P. 403–408.
2. Tyrrell D.A.J., Almeida J.D. Direct electron microscopy of organ cultures for the detection and characterization of viruses // Arch. Gesamte Virusforsch. 1967. V.22. P. 417–425.
3. Siddell S.G., Wege H., ter Meulen V. The biology of coronaviruses // J. Gen. Virol. 1983. V. 64. P. 761–776.
4. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses // Adv. Virus Res. 1983. V. 28. P. 35–112.
5. Fung S., Liu L.H. Human Coronavirus: Host- Pathogen Interaction // Annu. Rev. Microbiol. 2019. V. 73. P. 529–557. https://doi.org/10.1146/annurevmicro-020518-115759.
6. Cui J., Li F., Shi Zheng-Li. Origin and evolution of pathogenic coronaviruses // Nature Reviews. MiCRobiology. 2019. V. 17. P. 181–192
7. Chen Yu., Liu O., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. 2020, 22 January. https://doi.org/10.1002/jmv.25681
8. Wong A.C.P., Li X., Lau S.K.P. et al. Global Epidemiology of Bat Coronaviruses // Viruses. 2019. V. 11. P. 174. https://doi.org/10.3390/v11020174
9. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // Published online January 29, 2020. https://doi.org/10.1016/S0140-6736(20)30251-8
10. Widagdo W., Begeman L., Schipper D. et al. Tissue distribution of the MERS coronavirus receptor in bats // Sci. Reports. 2017. 1193. https://doi.org/10.1038/s41598-017-01290-6
11. van den Brand J., Smits S.L., Haagmans B.L. Pathogenesis of Middle East respiratory syndrome coronavirus // J. Pathol. 2015. V. 235. P. 175–184. https://doi.org/10.1002/path.4458
12. Kuba K., Imai Y., Rao S. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury // Nature Medicine. 2005. V. 11. P. 875–879.
13. Fan Y., Zhao K., Shi Z-L., Zhou P. Bat coronaviruses in China // Viruses. 2019. V. 11. 210. https://doi.org/10.3390/v11030210
14. Zhao Y., Zhao Z., Wang Y. et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov // BioRxiv. 2020. Jan. 26. https://doi.org/10.1101/2020.01.26.919985
15. Towner J.S., Amman B.R., Sealy T.K. et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats // PLoS Pathog. 2009. V. 5. № 7. e1000536. https://doi.org/10.1371/journal.ppat.1000536
16. Wang L.F., Cowled C. Bats and Viruses: A New Frontior of Emerging Infectious Diseases; John Wiley Sons Inc.: Hoboken, NJ, USA. 2015.
17. Lau S.K., Li K.S., Huang Y. et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndromerelated Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events // J. Virol. 2010. V. 84. P. 2808–2819.
18. Yang X.L., Tan C.W., Anderson D.E. et al. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China // Nature Microbiology. 2019. V. 4. P. 390–395. https://doi.org/10.1038/s41564-018-0328-y
19. Zhou P., Tachedjian M., Wynne J.W. et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 2696–2701.
20. Woo P.C., Lau S.K., Li K.S. et al. Genetic relatedness of the novel human group c betacoronavirus to tylonycteris bat coronavirus HKU4 and pipistrellus bat coronavirus HKU5 // Emerg. Microbes Infect. 2012. V. 1. https://doi.org/10.1038/emi.2012.45
21. Annan A., Baldwin H., Corman V.M. et al. Human Betacoronavirus 2c EMC/2012 – related Viruses in Bats, Ghana and Europe // Emerging Infectious Diseases. 2013. V. 19. № 3. P. 2456–2459. http://dx.doi.org/10.3201/eid1903.121503
22. Ge X-Y., Wang N., Zhang W. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft // Virologica Sinica. 2016. V. 31, № 1. P. 31–40. https://doi.org/10.1007/s12250-016-3713-9
23. Zhu Y., Li Ch., Chen L. et al. A novel human coronavirus OC43 genotype detected in mainland China // Emerging Microbes & Infections. 2018. V. 7. 173. https://doi.org/10.1038/s41426-018-0171-5
24. Corman V.M., Kallies R., Philipps H. et al. Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs // J. Virol. 2014. V. 88. P. 717–724.
25. Monchatre-Leroy E., Boue F., Boucher J.M. et al. Identification of alpha and beta coronavirus in wildlife species in France: Bats, rodents, rabbits, and hedgehogs // Viruses. 2017. V. 9. № 12. 364. https://doi.org/10.3390/v9120364
26. Saldanha I.F., Lawson B., Goharriz H. et al. Extension of the known distribution of a novel clade C betacoronavirus in a wildlife host // Epidemiology and Infection. 2019. V. 147, e169. P. 1–8. https://doi.org/10.1017/S0950268819000207
27. Lau S.K.R., Luk H., Wong A.S.P. et al. Wong Identification of a Novel Betacoronavirus (Merbecovirus) in Amur Hedgehogs from China // Viruses. 2019. V. 11. 980. https://doi.org/10.3390/v11110980
28. Subissia L., Posthumab C.C., Collet A. et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities // Proc. Natl. Acad. Sci. USA. 2014. Published online. www.pnas.org/cgi/doi/10.1073/pnas.1323705111.
29. Pyrc K., Dijkman R., Deng L. et al. Mosaic structure of human coronavirus NL63, one thousand years of evolution // J. Mol. Biol. 2006. V. 364. P. 964– 973. https://doi.org/10.1016/j.jmb.2006.09.074
30. Cavanagh D. Mawditt K., Adzharet A. al. Does IBV change slowly despite the capacity of the spike protein to vary greatly? // Adv. Exp. Med. Biol. 1998. V. 440. P. 729–734.
31. Su S., Wong G., Shi W. et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses // Trends in Microbiology. 2016. V. 24, № 6. https://doi.org/10.1016/j.tim.2016.03.003
32. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections // J. Pathol. 2015. V. 235. P. 185–195. https://doi.org/10.1002/path.4454
33. Zhao J., Li K., Wohlford-Lenane C. et al. Rapid generation of a mouse model for Middle East respiratory syndrome // Proc Natl Acad Sci USA. 2014. V. 111. P. 4970–4975. https://doi.org/10.1073/pnas.1323279111
34. Su S., Wong G., Shi W. et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses // Trends in Microbiology. 2016. V. 24, № 6. P. 490–502. http://dx.doi.org/10.1016/j.tim.2016.03.003
35. Menachery V.D., Yount B.L., Debbink K. et al.SARS-like cluster of circulating bat coronavirus pose threat for human emergence // Nat. Med. 2015. V. 21, № 12. P. 1508–1513. https://doi.org/10.1038/nm.3985/
36. Sheahan T. Rockx B., Donaldson E. et al. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium // J. Virol. 2008. V. 82. P. 2274–2285. https://doi.org/10.1128/JVI.02041-07
37. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins // Annu Rev Virol. 2016. V. 29; P. 237–261. https://doi.org/10.1146/annurevvirology-110615-042301
38. Bolles M., Deming D., Long K. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge // J. Virol. 2011. V. 85. P. 12201–12215. https://doi.org/10.1128/JVI.06048-11
39. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // www.thelancet.com Published online January 29, 2020 https://doi.org/10.1016/S0140-6736(20)30211-7
40. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited // Respir. Res. 2001. V. 2, № 1. P. 33–46. https://doi.org/10.1186/rr36
41. Chambers R.C., Scotton C.J. Coagulation cascade proteinases in lung injury and fibrosis // Proc. Am. Thorac. Soc. 2012. V. 9. P. 96–101.
42. Smits S.L., van den Brand J.M., de Lang A. et al. Distinct severe acute respiratory syndrome coronavirusinduced acute lung injury pathways in two different nonhuman primate species // J. Virol. 2011. V. 85. P. 4234–4245. https://doi.org/10.1128/JVI.02395-10
43. van Doremalen N., Bushmaker T., Munster V.J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions // Euro Surveill. 2013. V. 18, № 38. https://doi.org/10.2807/1560-7917.es2013.18.38.20590
44. Chan K.H., Peiris J.S.M., Lam S.V. et al. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus // Adv. Virol. 2011. Published online 2011/ Oct 1. https://doi.org/10.1155/2011/734690
45. McKinney K.R., Gong Y.Y., Lewis T.G. Environmental transmission of SARS at Amoy Gardens // J. Environ. Health. 2006. V. 68, № 9. P. 26–30.
46. Mullis L, Saif L.J., Zhang Y. et al. Stability of Bovine Coronavirus on Lettuce Surfaces Under Household Refrigeration Conditions // Food Microbiol. 2012. V. 30, № 1. P. 180–186. https://doi.org/10.1016/j.fm.2011.12.009
47. Casanova L., Rutala W.A., Weber D.J., Sobsey M.D. Survival of surrogate coronaviruses in water // Water Res. 2009. V. 43, № 7. P. 1893–1898. https://doi.org/10.1016/j.watres.2009.02.002
48. FAO/WHO. Viruses in food: scientific advice to support risk management activities: Meeting Report. 2008.
49. Muthumani K., Falzarano D., Reuschel E.L. et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against middle east respiratory syndrome coronavirus in nonhuman primates // Sci. Trans. Med. 2015. V. 7. https://doi.org/10.1126/scitranslmed.aac7462
50. Yong C.Y., Ong H.K., Yeapetal. Recent S.K. et al. Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus // Front Microbiol. 2019. V. 10. 1781. Published online 2019. Aug 2. https://doi.org/10.3389/fmicb.2019.01781
51. Yip M.S., Leung N.H.L., Cheung C.Y. et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus // Virol. J. 2014. V. 11. 82 p. https://doi.org/10.1186/1743-422X-11-82
52. Jaume M., Yip M.S., Cheung C.Y. et al. Anti- Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcR Pathway // J. Virol. 2011. V. 85, № 20. P. 10582–10597. https://doi.org/doi:10.1128/JVI.00671-11
53. Yip M.S., Cheung C.Y., Li P.H. et al. Investigation of antibody-dependent enhancement (ADE) of SARS coronavirus infection and its role in pathogenesis of SARS // BMC Proc. 2011. V. 5 (Suppl. 1). P. 80.
54. Jaume M., Yip M.S., Kam Y.W. et al. SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement // Hong Kong Med. J. 2012. V. 18 (Suppl. 2). P. 31–36.
55. Weingartl H., Czub M., Czub S. et al. Immunization with modified vaccinia virus ankarabased recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets // J. Virol. 2004. V. 78. P. 12672–12676. https://doi.org/10.1128/JVI.78.22.12672-12676
56. Czub M., Weingartl H., Czub S. et al. Evaluation of modified vaccinia virus ankara based recombinant SARS vaccine in ferrets // Vaccine. 2005. V. 23. P. 2273– 2279. https://doi.org/10.1016/j.vaccine.2005.01.033
57. Wang S.F., Tseng S.P., Yen C.H. et al. Antibodydependent SARS coronavirus infection is mediated by antibodies against spike proteins // Biochem Biophys Res Commun. 2014. V. 451. P. 208–214. https://doi.org/10.1016/j.bbrc.2014.07.090
58. Takada A., Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications // Reviews in medical virology. 2003. V. 13, № 6. P. 387–398. https://doi.org/10.1002/rmv.405
59. Kuba K., Imai Y., Rao S. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury // Nature Medicine. 2005. V. 11. P. 875–879.
60. Ren L.L., Wang Y.M., Wu Z.Q. et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study // Chin.Med. J. (Engl). 2020. V. 30. https://doi.org/10.1097/CM9.0000000000000722 [Epub ahead of print]
61. Cascella M., Rajnik M., Cuomo A. et al. Features, Evaluation and Treatment Coronavirus (COVID-19) [Updated 2020 Mar 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. URL: https://www.ncbi.nlm.nih.gov/books/NBK554776/.
62. Benvenuto D., Giovannetti M., Ciccozzi A. et al. The 2019‐new coronavirus epidemic: evidence for virus evolution // J. Med. Virol. 2020. V. 92, № 4. P. 455‐459. https://doi.org/10.1002/jmv.25688
63. Angeletti S., Benvenuto D., Bianchi M. et al. COVID‐2019: The role of the nsp2 and nsp3 in its pathogenesis // J. Med Virol. 2020. 1–5. https://doi.org/10.1002/jmv.25719
64. Gadlage M.J., Graham R.L., Denison M.R. Murine Coronaviruses Encoding nsp2 at Different Genomic Loci Have Altered Replication, Protein Expression, and Localization // J. Virol. 2008 V. 82. P. 11964–11969. https://doi.org/10.1128/JVI.01126-07
65. Saikatendu K., Joseph J., Subramanian V. et al. Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-ribose-1''-phosphate Dephosphorylation by a Conserved Domain of nsP3 // Structure. 2005. V. 13. № 11. P. 1665–1675. https://doi.org/10.1016/j.str.2005.07.022
66. Lei J., Kusov Y., Hilgenfeld R. Nsp3 of Coronaviruses: Structures and Functions of a Large Multi-Domain Protein // Antiviral Res. 2018. V. 149. P. 58–74. https://doi.org/10.1016/j.antiviral.2017.11.001
67. Xu. X.-T., Chen P., Wang J. et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission // Science China Life Sciences. 2020. V. 63. № 3. Р. 457–460. https://doi.org/10.1007/s11427-020-1637-5
68. Molecular Identification of Betacoronavirus in Bats From Sardinia (Italy): First Detection and Phylogeny // Virus Genes. 2019. V. 55. P. 60–67. https://doi.org/10.1007/s11262-018-1614-8
69. Rizzo F., Edenborough K.M., Toffoli R. et al. Coronavirus and Paramyxovirus in Bats From Northwest Italy // BMC Vet Res. 2017. V. 13, № 1. https://doi.org/10.1186/s12917-017-1307-x
70. Giovanetti M., Benvenuto D., Angeletti S., Ciccozzi M. The First Two Cases of 2019-nCoV in Italy: Where They Come From? // J. Med. Virol. 2020. V. 92, № 5. P. 518–521. https://doi.org/10.1002/jmv.25699
71. Kim J-M., Chung Y-S., Jo H.J. et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19 // Osong Public Health and Research Perspectives. 2020. V. 11. № 1. P. 3–7. https://doi.org/10.24171/j.phrp.2020.11.1.02
72. Corman V.M., Landt O., Kaiser M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020. V.25. № 3:pii=2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
73. Zhang J-J., Dong X., Cao Y-Y. et al. Clinical characteristics of 140 patients infected with SARSCoV- 2 in Wuhan, China // Allergy. 2020. 00. P. 1–12 (17 Februar). https://doi.org/10.1111/all.14238
74. Zu Z., Jiang M-D., Xu P=P. et al. Coronavirus Disease 2019 (COVID-19): A Perspective From China // Radiology. 2020. Feb 21 [Online ahead of print]. https://doi.org/10.1148/radiol.2020200490
75. Huang С., Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // www.thelancet.com. Published online 2020. January 24. https://doi.org/10.1016/S0140-6736(20)30183-5
Рецензия
Для цитирования:
Супотницкий М.В. Новый коронавирус SARSCoV-2 в аспекте глобальной эпидемиологии коронавирусных инфекций. Вестник войск РХБ защиты. 2020;4(1):32-65. https://doi.org/10.35825/2587-5728-2020-4-1-32-65. EDN: wlahac
For citation:
Supotnitskiy M.V. Novel coronavirus SARS-CoV-2 in the context of global epidemiology of coronavirus infections. Journal of NBC Protection Corps. 2020;4(1):32-65. (In Russ.) https://doi.org/10.35825/2587-5728-2020-4-1-32-65. EDN: wlahac