The Characteristics of the Delta Variant of SARS-CoV-2 Virus – the Dominant Agent of the Third and Forth Waves of Epidemic COVID-19 in Russia
https://doi.org/10.35825/2587-5728-2021-5-4-353-365
EDN: ajgima
Abstract
Among the epidemic variants of the SARS-CoV-2 virus the main attention is currently attracted by the delta variant (B.1.617), first identified in India in the end of 2020. Since the appearance of the delta variant, the morbidity rate of COVID-19 in India has increased 20-fold. The overflow of the delta variant of the SARS-CoV-2 virus outside of India is one of the factors in the emergence of the third wave of the COVID-19 pandemic. As of August 24, 2021 the delta variant of SARS-CoV-2 virus has been identified in 193 countries. The purpose of this work is to analyze the delta variant of SARSCoV-2 virus and the features of the disease caused by it. The main features of the delta variant are: a set of mutations affecting a significant functional area of S-protein; a transfer rate from person to person; a reduced incubation period of caused disease. In Russia, the delta variant of SARS-CoV-2 virus appears no earlier than the end of April – beginning of May, 2021. The spread of the delta variant as the dominant one is associated with the emergence in early June 2021 of the third, and in mid-September – the fourth wave of the COVID-19 epidemic in Russia. The epidemiological data for Russia show a sharp increase in the number of new cases of the disease, with a simultaneous increase in the number of hospitalizations and deaths of the disease. The necessary measures to combat the epidemic are: first of all, accelerating the pace of vaccination, as well as the set of administrative measures, including limiting mass events, strict observance of the mask regime and social distance in public places.
About the Authors
T. E. SizikovaRussian Federation
Tat' jana Evgen'evna Sizikova. Researcher. Candidate of Biologic Sciences.
Oktyabrskaya Street 11, Sergiev Posad 141306
V. N. Lebedev
Russian Federation
Vitaliy Nikolaevich Lebedev. Leading researcher. Doctor of Biological Sciences, Professor.
Oktyabrskaya Street 11, Sergiev Posad 141306
D. A. Kutaev
Russian Federation
Dmitriy Anatol'evich Kutaev. Deputy of Head of Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defenсe of the Russian Federation. Candidate of Medical Sciences.
Oktyabrskaya Street 11, Sergiev Posad 141306
S. V. Borisevich
Russian Federation
Sergey Vladimirovich Borisevich. Head of Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defenсe of the Russian Federation. Corresponding Member of Russian Academy of Sciences. Doctor of Biological Sciences, Professor.
Oktyabrskaya Street 11, Sergiev Posad 141306
References
1. Koyama T., Platt D., Parida L. Variant analysis of SARS-CoV-2 genomes // Bull World Health Organ. 2020. V. 98. N. 7. P. 495–504. http://doi.org/10.2471/BLT.20.253591
2. Riemersma K.K., Grogan B.E., Kita-Yarbro A., Halfmann P. et al. Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent – Wisconsin, July 2021 // medRxiv. 2021. https://doi.org/10.1101/2021.07.31.21261387
3. Mlcochova P., Kemp S.A., Dhar M.S. et al. SARSCoV-2 B.1.617.2 Delta variant replication and immune evasion // Nature. 2021. V. 599. P. 114–119. https://doi.org/10.1038/s41586-021-03944-y
4. Callaway E. Delta coronavirus variant: scientists brace for impact // Nature. 2021. V. 595. № 7865. P. 17–18. http://doi.org/10.1038/d41586-021-01696-3
5. Wise J. Covid-19: UK cases of variant from India rise by 160% in a week // BMJ. 2021. V. 373. № 1315. http://doi.org/10.1136/bmj.n1315
6. Mishra S., Mindermann S., Sharma M. et al. Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England // EClinical Medicine. 2021. V. 39. P. 101064. http://doi.org/10.1016/j.eclinm.2021.101064
7. Mlcochova P., Kemp S.A., Dhar M.S. et al. SARSCoV-2 B.1.617.2 Delta variant replication and immune evasion // Nature. 2021. V. 599. № 7883. P. 114–119. http://doi.org/10.1038/s41586-021-03944-y
8. Twohig K.A., Nyberg T., Zaidi A. et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study // Lancet Infect Dis. 2021. S1473-3099. № 21. P. 00475–00478. http://doi.org/10.1016/S1473-3099(21)00475-8
9. Li Q., Guan X., Wu P. et al. Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia // N Engl J Med. 2020. V. 382. № 13. P. 1199–1207. http://doi.org/10.1056/NEJMoa2001316
10. Riou J., Althaus C.L. Pattern of early human-tohuman transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 // Euro Surveill. 2020. V. 25. № 4. P. 2000058. http://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058
11. Wu J.T., Leung K., Bushman M. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China // Nat Med. 2020. V. 26. № 4. P. 506–510. http://doi.org/10.1038/s41591-020-0822-7
12. Sanche S., Lin Y.T., Xu C. et al. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2 // Emerg Infect Dis. 2020. V. 26. № 7. P. 1470-1477. http://doi.org/10.3201/eid2607.200282
13. Yadav A.K., Kumar S., Singh G., Kansara N.K. Demystifying R naught: understanding what does it hide? // Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine. 2021. V. 46. № 1. P. 7–14. https://doi.org/10.4103/ijcm.IJCM_989_20
14. Borisevich S.V., Sizikova Т.Е., Lebedev V.N. COVID-19 pandemic: analysis of possible scenarios for the development of the epidemic in Russia // Journal of NBC Protection Corps. 2020. V. 4. № 2. P. 116–130. https://doi.org/10.35825/2587-5728-2020-4-2-116-130
15. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences // Am. J. Physiol. Heart Circ. Physiol. 2020. V. 318. № 5. P. 1084– 1090. https://doi.org/10.1152/ajpheart.00217.2020.
16. Ong S.W.X., Chiew C.J., Ang L.W. et al. Clinical and virological features of SARS-CoV-2 variants of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta) // Clin. Infect. Dis. 2021. ciab721. https://doi.org/10.1093/cid/ciab721
17. Planas D., Bruel T., Grzelak L. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies // Nat. Med. 2021. V. 27. P. 917– 924. https://doi.org/10.1038/s41591-021-01318-5
18. Shang J., Yushun W., Lou C. et al. Cell entry mechanisms of SARS-CoV-2 // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 21. P. 11727–11734. https://doi.org/10.1073/pnas.2003138117
19. Starr T.N., Greaney A.J., Dingens A.S. et al. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 // Cell Rep Med. 2021. V. 2. № 4. P. 100255. http://doi.org/10.1016/j.xcrm.2021.100255
20. Di Giacomo S., Mercatelli D., Rakhimov A. et al. Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K // J Med Virol. 2021. V. 93. № 9. P. 5638–5643. http://doi.org/10.1002/jmv.27062
21. Harvey W.T., Carabelli A.M., Jackson B. et al. SARS-CoV-2 variants, spike mutations and immune escape // Nat Rev Microbiol. 2021. V. 19. P. 409–424. https://doi.org/10.1038/s41579-021-00573-0
22. Hoffmann M., Hofmann-Winkler H., Krüger N. et al. SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination // Cell Reports. 2021. V. 36. № 3. P. 109415 http://doi.org/10.1016/j.celrep.2021.109415
23. Wall E.C., Wu M., Harvey R.K. et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination // Lancet. 2021. V. 397. № 10292. P. 2331–2333. http://doi.org/10.1016/s0140-6736(21)01290-3
24. Planas D. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization // Nature. 2021. V. 596. № 7871. P. 276–280. http://doi.org/10.1038/s41586-021-03777-9
25. Twohig K.A., Nyberg T., Zaidi A. et al. Hospital admission and emergency care attendance risk for SARSCoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study // Lancet Infect Dis. 2021. Published Online. http://doi.org/10.1016/S1473-3099(21)00475-8
26. Fisman D.N., Tuite A.R. Evaluation of the relative virulence of novel SARS-CoV-2 variants: a retrospective cohort study in Ontario, Canada // CMAJ. 2021. V. 193. № 42. P. 1619-1625. http://doi.org/10.1503/cmaj.211248
27. Subbaraman N. How do vaccinated people spread Delta? What the science says // Nature. 2021. V. 596. № 7872. P. 327-328. http://doi.org/10.1038/d41586-021-02187-1
28. Dyer O. Covid-19: Delta infections threaten herd immunity vaccine strategy // BMJ. 2021. V. 374. № 1933. http://doi.org/10.1136/bmj.n1933
29. Li B., Li A.D., Li K. et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant // medRxiv. 2021. http://doi.org/10.1101/2021.07.07.21260122. https://virological.org/t/viral-infection-and-transmission-ina-largewell-traced-outbreak-caused-by-the-delta-sarscov-2variant/724
30. Altawalah H. Antibody responses to natural SARS-CoV-2 infection or after COVID-19 vaccination // Vaccines (Basel). 2021. V. 9. № 8. P. 910. http://doi.org/10.3390/vaccines9080910
31. Yeh T.Y., Contreras G.P. Full vaccination suppresses SARS-CoV-2 delta variant mutation frequency // medRxiv. 2021. http://doi.org/10.1101/2021.08.08.21261768;
32. https://www.medrxiv.org/content/10.1101/2021.08.08.21261768v1
33. Baraniuk C. Covid-19: how effective are vaccines against the delta variant? // BMJ. 2021. V. 374. n1960. http://doi.org/10.1136/bmj.n1960
34. Lopez B., Jamie A.N., Gower C. et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant // N Engl J Med. 2021. V. 385. № 7. P. 585– 594. http://doi.org/10.1056/NEJMoa2108891
35. Gazit S., Shlezinger R., Perez G. et al. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections // medRxiv. 2021. https://doi.org/10.1101/2021.08.24.21262415;
36. https://www.medrxiv.org/content/10.1101/2021.08.24.21262415v1
37. Torjesen I. Covid-19: Delta variant is now UK’s most dominant strain and spreading through schools // BMJ. 2021. V. 373. n1445. http://doi.org/10.1136/bmj.n1445avianeggshellpreservesancientDNA // Proc. R. Soc. B. 2010. V. 277. P. 1991–2000. http://doi.org/10.1098/rspb.2009.2019
38. Grachev M.A., Kuznetsova S.Yu., Sherbakova T.A. A method for the isolation of pure DNA for PCR // Molecular Biology. 2006. V. 40. P. 159-161. (in Russian).
39. Zähringer H. Don’t lose the thread. Product survey: Manual DNA extraction kits // Lab Times. 2012. V. 6, P. 52–56. URL: https://docplayer.net/53735876-Pure-dnadevoid-of-impurities-from.htm.
40. Doebler R.W., Erwin B., Hickerson A. et al. Continuous-flow, rapid lysis devices for biodefense nucleic acid diagnostic systems // JALA. 2009. V. 14. P. 119-125. https://doi.org/10.1016/j.jala.2009.02.010
41. Chacon-Cortes D., Griffiths L. Methods for extracting genomic DNA from whole blood samples: current perspectives // J. Biorepository Science for Applied Medicine, 2014. V. 2. P. 1–9. https://doi.org/10.2147/BSAM.S46573
42. Archer M. J., Lin B., Wang Z. et al. Magnetic bead-based solid phase for selective extraction of genomic DNA // Anal. Biochem. 2006. V. 355. P. 285-297. https://doi.org/10.1016/j.ab.2006.05.005
43. Thatcher S.A. DNA/RNA preparation for molecular detection // Clin. Chem. 2015. V. 61. P. 89-99. https://doi.org/10.1373/clinchem.2014.221374
44. Berensmeier S. Magnetic particles for the separation and purification of nucleic acids // Appl. Microbiol. Biotechnol. 2006. V. 73. P. 495-504. https://doi.org/10.1007/s00253-006-0675-0
45. Phillips K., McCallum N., Welch L. A comparison of methods for forensic DNA extraction: Chelex-100® and the QIAGEN DNA Investigator Kit // Forensic Sci. Int. Genet. 2012. V. 6. P. 282-285. https://doi.org/10.1016/j.fsigen.2011.04.018
46. Schrader C., Schielke A., Ellerbroek L. et al. PCR inhibitors—occurrence, properties and removal // J. App. Microb. 2012. V. 113. P. 1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
47. de Boer R, Peters R, Gierveld S. et al. Improved detection of microbial DNA after bead-beating before DNA isolation // J. Microbiol. Methods. 2010. V. 80. P. 209-211. https://doi.org/10.1016/j.mimet.2009.11.009
48. Verheyen J., Kaiser R., Bozic M. et al. Extraction of viral nucleic acids: comparison of 5 automated nucleic acid extraction platforms // J. Clin. Virol. 2012. V. 54. P. 255-259. https://doi.org/0.1016/j.jcv.2012.03.008
49. Shipley M., Koehler J., Kulesh D. et al. Comparison of nucleic acid extraction platforms for detection of select biothreat agents for use in clinical resource limited settings // J. Microbiol. Methods. 2012. V. 91. P. 179-183. https://doi.org/10.1016/j.mimet.2012.06.008
50. Mauk M., Liu C., Sadik M. et al. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection // Methods Mol. Biol. 2015. V. 1256. P. 15–40. https://doi.org/10.1007/978-1-4939-2172-0_2
51. Saeed M., Ahmad M., Iram S. et al. GeneXpert technology. A breakthrough for the diagnosis of tuberculous pericarditis and pleuritis in less than 2 hours // Saudi Med. J. 2017. V. 38. No. 7. P. 699-705. https://doi.org/10.15537/smj.2017.7.17694
52. Poritz M., Blaschke A., Byington C. et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection // PLoS One. 2011. V. 6. e26047. https://doi.org/10.1371/journal.pone.0026047
Review
For citations:
Sizikova T.E., Lebedev V.N., Kutaev D.A., Borisevich S.V. The Characteristics of the Delta Variant of SARS-CoV-2 Virus – the Dominant Agent of the Third and Forth Waves of Epidemic COVID-19 in Russia. Journal of NBC Protection Corps. 2021;5(4):353-365. (In Russ.) https://doi.org/10.35825/2587-5728-2021-5-4-353-365. EDN: ajgima