Use of Modularity as a Principle of Design of Metal-organic Framework-based Materials with Specified Properties for Creating Modern Protective Equipment
https://doi.org/10.35825/2587-5728-2021-5-2-165-172
EDN: mvuojd
Abstract
An earlier analysis of approaches to the creation and improvement of protective materials and tissues made it possible to assume that the development of personal protective equipment (PPE) against various damaging factors of chemical, biological and physical nature can in future go towards the creation of modular organometallic frame structures (MOF-materials) with specific properties (from toxic chemicals and pathogenic microorganisms). The aim of this article is to develop and disclose the principle of modularity of construction of protective materials based on MOF-structures with specific properties. The principle of modularity of construction of protective materials with specific properties, proposed by us, is based on the use of single unified platform, on the surface of which special modules or combinations of modules are applied, which ensure the protection from various factors of chemical, biological and physical nature. The universal structure of MOF, called «MOF-universal», has been substantiated. The composition and properties of individual modules, possible and optimal combinations of modules of MOF-structures, the importance and significance of individual modules and their combinations for imparting universal protective properties to MOF-material are determined. The use of this principle will make it possible to impart protective properties to almost any clothing, while maintaining its physiological and hygienic characteristics and providing the required level of protection for personnel, without using specialized personal protective equipment.
Keywords
About the Authors
V. V. ZavyalovRussian Federation
Vasily Vladimirovich Zavyalov. Senior Researcher. Candidate of Chemical Sciences. Professor of the Academy of Military Sciences
Brigadirskii Lane 13, Moscow 105005
N. V. Zavyalova
Russian Federation
Natalya Vasilyevna Zavyalova. Leading Researcher. Doctor of Biological Sciences, Professor. Academician of the Academy of Military Sciences
Brigadirskii Lane 13, Moscow 105005
V. I. Kholstov
Russian Federation
Viktor Ivanovich Kholstov. Member of the Dissertation Council of the «27 Scientific Centre» of the Ministry of Defence of the Russian Federation. Doctor of Chemical Sciences, Professor. Honored Chemist of the Russian
Brigadirskii Lane 13, Moscow 105005
V. A. Kovtun
Russian Federation
Brigadirskii Lane 13, Moscow 105005
V. K. Gorelenkov
Russian Federation
Valentin Konstantinovich Gorelenkov. Leading Researcher. Doctor of Chemical Sciences, Professor
Perovsky Passage 2, Moscow 111024
G. A. Frolov
Russian Federation
George Alexandrovich Frolov. Candidate of Chemical Sciences, Associate Professor
Leninsky Avenue 4, Moscow 119049,
References
1. Kopylov V.M., Khananashvili L.1. Teiler Derden. https://www.zerohedge.com/geopolitical/flir-darpa-contract-develop-next-gencombatsuits-biowarfare от 13 апреля 2021 г.
2. Organophosphorus Neurotoxins: monograph / Eds. Professor S.D. Varfolomeev, Professor E.N. Efremenko. Мoscow: RIOR, 2020. 380 p. ISBN: 978-5-369-02026-5. https://doi.org/10.29039/02026-5
3. Zavialov V.V., Kujelko S.V., Zavialova N.V., Kovtun V.A., Kholstov V.I., Taranchenko Yu.F., Slastilova L.M., Efremenko E.N., Sin’ keliov A.P. Modern Directions of Creating New Protective Materials and Tissues For Means of Individual and Collective Protection Against Toxic Chemicals and Pathogenic Microorganisms // Journal of NBC Protection Corps. 2019. V. 3. No 3. P. 217–254. https://doi.org/10.358.25/2587-5728-2019-3-3-217-254
4. Soldier systems technology roadmap / Сapstone report and action plan / Supporting the future soldier supporting Canadian industry. Government of Canada. https://www.defenceandsecurity.ca/UserFiles/Uploads/publication/reports/files/document-10pdf (дата обращения: 25.12.2018).
5. Sloter L. Overview of nanotechnology & nanomanufacturing within the Department of defense. American Vacuum Society International Symposium and Exhibition Baltimore, Maryland. USA. 2014. URL: https://avs.org/AVS/files/d3/d388692a-70b1-472dbec6-44df3b06126e.pdf
6. Tomar S. Nanotechnology: the emerging field for future military applications. IDSA Monograph Series No. 48. 2015. ISBN: 978-93-82169-58-1.
7. An H., Li M., Gao J., Zhenjie Z., Ma S., Chen Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications // Coordination Chemistry Reviews. 2019. V. 384. P. 90–106.
8. Li M., Dan Li D., O’Keeffe M., Yaghi O.M. Topological analysis of metal−organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle // Chem. Rev. 2014. V. 114. P. 1343–1370.
9. Bobbitt N.S., Mendonca M.L., Howarth A.J., et al. Metal-organic frameworks for removal of toxic industrial chemicals and chemical warfare agents // Chem. Soc. Rev. 2017. V. 46. P. 3357–3385.
10. Gutov O.V., Bury W., Gomez-Gualdron D.A., et al. A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities // Chemistry A. European J. 2014. V. 20. P. 12389–12393.
11. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The Chemistry and Applications of MetalOrganic Frameworks // Science. 2013. V. 341. № 6149. P. 12340444. https://doi.org/10.11265/science.1230444
12. Howarth A.J., Liu Y., Li P. et al. Chemical, thermal and mechanical stabilities of metal−organic fameworks // Nat. Rev. Mater. 2016. V. 1. P. 15018.
13. De Coste J.B., Peterson G.W. Metal−organic fameworks for air purification of toxic chemicals // Chem. Rev. 2014. V. 114. № 11. P. 5695–5727.
14. Lopes-Maya E., Montoro C., RodriguesAlbelo L.M. et al. Textile/ metal–organic-framework composites as self-detoxifying filters for chemicalwarfare agents // Angew. Chem. Int. Ed. Engl. 2015. V. 54. № 23. P. 6790–6794.
15. Moon S-Y., Liu Y., Hupp J.T., Farha O.K. Instantaneous hydrolysis of nerve-agent smulants with a six-connected zirconium-based metal–organic famework // Angew. Chem. Int. Ed. Emgl. 2015. V. 54. № 23. P. 6795–6799.
16. Vemuri R.S., Armatis P.D., Bontha J.R., McGrail B.P., Motkuri R.K.. An overview of detection and neutralization of chemical warfare agents using metal organic frameworks // J. Bioterror. Biodef. 2015. V. 6. № 3. https://doi.org/10.4172/2157-2526.1000137
17. Alongi J.,Tata J., Carosio F., Rosace G., Alberto Frache A., Giovanni Camino G. A comparative analysis of nanoparticle adsorption as fire-potection approach for fabrics. // Polymers. 2015. V. 7. № 1. P. 47–68.
18. Bhuiyan M.A.R., Wang L., Shaid A. et al. Advances and application of chemical protective clothing system // J. Industrial Textiles. 2019. V. 49. № 1. P. 97–138. https://doi.org/10.1177/1528083718779426
19. Qi K.,Wang X., Xin J.H., Photocatalytic selfcleaning textiles based on nanocrystalline titanium dioxide // Textile Research J. 2011. V. 81. 1. P. 101-110.
20. Ugur S., Sarıısık M., Aktas H. The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics // Nanotechnology. 2010. V. 21. 32. P. 32560–3. https://doi.org/10.1088/0957-4484/21/32/325603
21. Navale G.R., Thripuranthaka M, Late D.J., Shinde S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi // JSM Nanotechnol Nanjmed. 2015. V. 3. P. 1033.
22. Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacteral activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms // FEMS Microbial Lett. 2018. V. 279. P. 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
23. Smiechowicz E., Niecraszewicz B., Kulpinski P., Dzitko K. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica // Cellulose. 2018. V. 25. P. 3499–3517. https://doi.org/10.1007/s10570-018-1796-1
24. Gold K., Slay B., Knachstedt M., Gaharwar A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles // Adv. Therap. 2018. V. 1. P. 1100033. https://doi.org/10.1002/adtp.201700033
25. Shcherbakov А.B., Zholobak N.М., Ivanov V.К., Tretyakov Yu.D., Spivak N.Ya. Nanomaterials Based on the Nanocrystalline Ceric Dioxode: Properties and Use Perspectives in Biology and Medicine // Biotechnology. 2011. V. 4. № 1. P. 9–28.
26. Ravikumar S., Gokulakrishnan R. The inhibitory effect of metal oxide nanoparticles against poultry pathogens // Int. J. Pharm. Sci. Drug Res. 2012. V. 4. P. 157–159.
27. Doskocz N., Zaleska-Radziwill M. Effects of zirconium oxide nanoparticles on bacterial growth // PhD Interdisplinary J. 2015. V. 1. P. 1–7.
28. Kim S., Ying W.B., Jung H. et al. Zirconium hydroxide-coated nanofibers mats for nerve agent decontamination // Chem. Asian J. 2017. V. 12. № 6. P. 698–705. https://doi.org/10.1002/asia.201601729
29. Zavyalov V.V., Zavyalova N.V., Kholstov V.I., Gorelenkov V.K., Frolov G.A., Lyagin I.V., Efremenko E.N. Strategy for Development of Modern Protective Equipment Based on Organometallic Complexes with Desired Properties // Journal of NBC Protection Corps. 2020. V. 4. No 3. P. 305–337. https://doi.org/10.35825/2587-5728-2020-4-3-305-337
30.
Review
For citations:
Zavyalov V.V., Zavyalova N.V., Kholstov V.I., Kovtun V.A., Gorelenkov V.K., Frolov G.A. Use of Modularity as a Principle of Design of Metal-organic Framework-based Materials with Specified Properties for Creating Modern Protective Equipment. Journal of NBC Protection Corps. 2021;5(2):165-172. (In Russ.) https://doi.org/10.35825/2587-5728-2021-5-2-165-172. EDN: mvuojd