Synthetic Biology – Friend or Foe? What Kind of Threats Should We Expect?
https://doi.org/10.35825/2587-5728-2021-5-2-103-122
EDN: tagrek
Abstract
Synthetic biology is a newly emerging branch of dual-use technology. It is a combination of biology and different branches of engineering. The aim of this article is to show the main technological methods of synthetic biology and to give specific examples of its use to create new types of biological agents and methods of biological warfare, previously unthinkable and presented only in science fiction. Basic tools and techniques of synthetic biology are: DNA synthesis and DNA sequencing; «chassis», i.e. host system harboring the genetic toolbox for expression of the desired genes, delivered by suitable vectors, of the engineered biological pathway; engineering of transcription systems that do not deplete the resources of the cell (synthetic promotors and transcription factors); genome modification tools (CRISPR/Cas9 nuclease, zinc finger nucleases, TALE nucleases, meganucleases); computer-aided tools (involved in basic structural design and synthesis; in network design; in prediction of behavior/function/response). Synthetic biology has already demonstrared its capabilities in re-creating known pathogenic viruses and pathogenic bacteria; in making existing pathogenic bacteria and viruses more dangerous for humans; in creating new pathogens; in manufacturing toxic chemicals or biochemicals by exploiting natural and artificial metabolic pathways; in making toxic chemicals and biochemicals via in situ synthesis; in modifying the human microbiome; in modifying the human immune system; in modifying the human genome (through addition, deletion, or modification of genes or through epigenetic changes that modify gene expression and can pass from parent to child during reproduction and thus spread a genetic change through the population over time). The article discusses in detail the possibilities of synthetic biology for the development of new means of biological warfare. The author believes that it is necessary not only to constantly monitor these new dual-use biotechnologies, but also to improve traditional and scientific methods of their monitoring.
About the Author
J. LakotaSlovakia
Ján Lakota. MD, PhD
Dubravská cesta 9, 841 04 Bratislava; Odbojárov 10, 820 05 Bratislava
References
1. Young E., Alper H. Synthetic biology: tools to design, build, and optimize cellular processes // Journal of Biomedicine and Biotechnology. 2010. https://doi.org/10.1155/2010/130781
2. Singh S.P., Bansal S., Pandey A. Basics and Roots of Synthetic Biology (In book: Current Developments in Biotechnology and Bioengineering Synthetic Biology, Cell Engineering and Bioprocessing Technologies (P. 3–22). Publisher: Elsevier. https://www.researchgate.net/publication/334646804_Basics_and_Roots_of_Synthetic_Biology
3. Reis A. CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology / In CRISPR/ Cas9 and Targeted Genome Editing: A New Era in Molecular Biology. 2015. https://international.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecularbiology
4. Liu R., Liang L., Freed E.F. et al. Directed Evolution of CRISPR/Cas Systems for Precise Gene Editing // Trends Biotechnol. 2021. V. 39(3). P. 262–273. https://doi.org/10.1016/j.tibtech.2020.07.005
5. Ching T., Himmelstein D.S., Beaulieu-Jones B.K. et al. Opportunities and obstacles for deep learning in biology and medicine // J. R. Soc. Interface. 2018. V. 15(141). 20170387. https://doi.org/10.1098/rsif.2017.0387
6. Zhang J., Petersen S.D., Radivojevic T. et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism // Nat. Commun. 2020. V. 11(1). 4880. https://doi.org/10.1038/s41467-020-17910-1
7. Thomsen J., Sletfjerding M.B., Jensen S.B. et al. DeepFRET, a software for rapid and automated singlemolecule FRET data classification using deep learning // Elife. 2020. V. 9. e60404. https://doi.org/10.7554/eLife.60404
8. Lakota Ján. Today`s Biothreats – Where the Past Predictions Meet the Future // Journal of NBC Protection Corps. 2020. V. 4. № 4. P. 421–440. https://doi.org/10.35825/2587-5728-2020-4-4-421-430
9. Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template // Science. 2002. V. 297(5583):. P. 1016–1018. https://doi.org/10.1126/science.1072266
10. Lee Y.N., Bieniasz P. Reconstitution of an infectious human endogenous retrovirus // PLoS Pathog. 2007. V. 3(1): e10. P. 0119–0130. https://doi.org/10.1371/journal.ppat.0030010
11. Wimmer E., Paul A.V. Synthetic poliovirus and other designer viruses: What have we learned from them? // Annual Review of Microbiology. 2011. V. 65. P. 583–609. https://doi.org/10.1146/annurevmicro-090110-102957
12. Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments // PLoS ONE. 2018. V. 13(1). e0188453. https://doi.org/10.1371/journal.pone.0188453
13. Gibson, D.G., Glass J.I., Lartigue C. et al. Creation of a bacterial cell controlled by a chemically synthesized genome // Science. 2010. V. 329(5987. P. 52– 56. https://doi.org/10.1126/science.1190719
14. de Vries R.P., Peng W., Grant O.C. et al. Three mutations switch H7N9 influenza to humantype receptor specificity // PLoS Pathogens. 2017. V. 13(6):e1006390. https://doi.org/10.1371/journal.ppat.1006390
15. Becker M.M., Graham R.L., Donaldson E.F. et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice // Proc. Natl. Acad. Sci. USA. 2008. V. 105(50). P. 19944–19949. https://doi.org/10.1073/pnas.0808116105
16. Cockrell A.S., Yount B.L., Scobey T. et al. A mouse model for MERS coronavirus induced acute respiratory distress syndrome // Nature Microbiology. 2016. V. 2. 16226. https://doi.org/10.1038/nmicrobiol.2016.226
17. Jackson P.J., Ramsay A. J., Christensen C.D. et al. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistаnce to mousepox // J. Virol. 2001. V. 75, № 3. P. 1205–1210. https://doi.org/:10.1128/JVI.75.3.1205-1210.2001
18. Iwasaki A., Medzhitov R. Innate responses to viral infection / in Field’s Virology, 6th Ed., D.M. Knipe and P.M. Howley, eds. Philadelphia, PA: 2013. P. 189–213.
19. Gorman S., Viseshakul N., Cohen B. et al. A recombinant adenovirus that directs secretion of biologically active к-bungarotoxin from mammalian cells // Molecular Brain Research. 1997. V. 44, № 1. P. 143– 146. https://doi.org/10.1016/S0169-328X(96)00250-1
20. Coen D.M., Richman D.D. Antiviral agents / in Field’s Virology, 6th Ed., D.M. Knipe and P.M. Howley, eds. Philadelphia, PA: 2013. P. 338–373.
21. Ribet D., Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues // Microbes and Infection. 2015. V. 15(3). P. 173–183. https://doi.org/10.1016/j.micinf.2015.01.004
22. Cress B.F., Englaender J.A., He W. et al. Masquerading microbial pathogens: Capsular polysaccharides mimic host-tissue molecules // FEMS Microbiology Reviews. 2014. V. 38(4). P. 660–697. https://doi.org/10.1111/1574-6976.12056
23. Quenee L.E., Hermanas T.M., Ciletti N. et al. Hereditary hemochromatosis restores the virulence of plague vaccine strains // Journal of Infectious Diseases. 2012. V. 206(7). P. 1050–1058. https://doi.org/10.1093/infdis/jis433
24. Carleton H.A., Gerner-Smidt P. Wholegenome sequencing is taking over foodborne disease surveillance // Microbe. 2016. V. 11(7). P. 311–317.
25. Blair J.M., Webber M.A., Baylay A.J. et al. Molecular mechanisms of antibiotic resistance // Nature Reviews Microbiology. 2015. V. 13. P. 41–51. https://doi.org/10.1038/nrmicro3380
26. Revich B.A., Podolnaya M.A. Thawing of permafrost may disturb historic cattle burial grounds in East Siberia // Global Health Action. 2011. V. 4(1). 8482. https://doi.org/10.3402/gha.v4i0.8482
27. Luo M.L., Mullis A.S., Leenay R.T. et al. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression // Nucleic Acids Research. 2015. V 43(1). P. 674–681. https://doi.org/10.1093/nar/gku971
28. Zhang Y., Ptacin J.L., Fischer E.C. et al. A semisynthetic organism that stores and retrieves increased genetic information // Nature. 2017. V. 551(7682). P. 644–647. https://doi.org/10.1038/nature24659
29. Krishnamurthy M., Moore R.T., Rajamani S. et al. Bacterial genome engineering and synthetic biology: Combating pathogens // BMC Microbiology. 2016. V. 16. 258. https://doi.org/10.1186/s12866-016-0876-3
30. Barquist L., Boinett C.J., Cain A.K. Approaches to querying bacterial genomes with transposoninsertion sequencing // RNA Biology. 2013. V. 10(7). P. 1161–1169. https://doi.org/10.4161/rna.24765
31. Simon A.K., Hollander G.A., McMichael A. Evolution of the immune system in humans from infancy to old age // Proc. Biol. Sci. 2015. V. 282(1821). P. 20143085. https://doi.org/10.1098/rspb.2014.3085
32. Delves P.J. Overview of the Immune System // MSD Manual for the Consumer. 2020 Apr. https://www.msdmanuals.com/home/immune-disorders/biologyof-the-immune-system/overview-of-the-immunesystem (дата обращения: 21.12.2020)
33. Brodin P., Davis M.M. Human immune system variation // Nat. Rev. Immunol. 2017. V. 1. P. 21–29. https://doi.org/10.1038/nri.2016.125
34. Koch L., Lopes A., Maiguy A. et al. Natural outbreaks and bioterrorism: How to deal with the two sides of the same coin? // J. Glob. Health. 2020. V. 10(2). 020317. https://doi.org/10.7189/jogh.10.020317
35. Dantal J., Soulillou J.P. Immunosuppressive drugs and the risk of cancer after organ transplantation // N. Engl. J. Med. 2005. V. 352(13). P. 1371–1373. https://doi.org/10.1056/NEJMe058018
36. London N.J., Farmery S.M., Will E.J. et al. Risk of neoplasia in renal transplant patients // Lancet. 1995. V. 346(8972). P. 403–406. https://doi.org/10.1016/s0140-6736(95)92780-8. Erratum in: Lancet. 1995. Sep 9; V. 346(8976). P. 714. PMID: 7623570.
37. Constantinescu C.S., Farooqi N., O'Brien K. et al. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS) // Br. J. Pharmacol. 2011. V. 64(4). P. 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
38. Mou H., Kennedy Z., Anderson D.G. et al. Precision cancer mouse models through genome editing with CRISPR-Cas9 // Genome Medicine. 2015. V. 7. 53. https://doi.org/10.1186/s13073-015-0178-7
39. Brocken D.J.W., Tark-Dame M., Dame R.T. dCas9: A versatile tool for epigenome editing // Current Issues in Molecular Biology. 2017. V. 26. P. 15–32. https://doi.org/10.21775/cimb.026.015
40. Bennett R.L., Licht J.D. Targeting epigenetics in cancer // Annual Reviews of Pharmacology and Toxicology. 2018. V. 58. P. 187–207. https://doi.org/10.1146/annurev-pharmtox-010716-105106
41. RNA-Based Regulation in Human Health and Disease / Ed. Rajesh Pandey, 2020. V. 19, Translational Epigenetics. Academic Press; 1st edition (19 Aug. 2020).
42. Vojtechova Z., Tachezy R. The Role of miRNAs in Virus-Mediated Oncogenesis // Int. J. Mol. Sci. 2018. V. 19(4). P. 1217. https://doi.org/10.3390/ijms19041217
43. Cullen B.R. MicroRNAs as mediators of viral evasion of the immune system // Nature Immunology. 2013. V. 14(3). P. 205–210. https://doi.org/10.1038/ni.2537
44. Steinle H., Behring A., Schlensak C. et al. Concise review: Application of in vitro transcribed messenger RNA for cellular engineering and reprogramming: Progress and challenges // Stem Cells. 2017. V. 35(1). P. 68–79. https://doi.org/10.1002/stem.2402
45. O’Bryan S., Dong S., Mathis J.M. et al. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer // European Journal of Cancer. 2017. V. 72. P. 1–11. https://doi.org/10.1016/j.ejca.2016.11.004
46. Hammond A., Galizi R., Kyrou K. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae // Nature Biotechnology. 2016. V. 34(1). P. 78–83. https://doi.org/10.1038/nbt.3439
Review
For citations:
Lakota J. Synthetic Biology – Friend or Foe? What Kind of Threats Should We Expect? Journal of NBC Protection Corps. 2021;5(2):103-122. (In Russ.) https://doi.org/10.35825/2587-5728-2021-5-2-103-122. EDN: tagrek