Current State of Method Development for PCR Sample Peparations
https://doi.org/10.35825/2587-5728-2021-5-3-236-246
EDN: boyzhz
Abstract
The sensitivity, specificity and reproducibility of molecular genetic methods of analysis largely depend on the quality of the preliminary preparation of the analyzed samples. During the sample preparation, the tasks of disinfecting pathogenic material, lysing cell membranes, removing compounds and impurities that inhibit the polymerase chain reaction (PCR), as well as concentrating nucleic acids are solved. The purpose of this work is to select modern approaches to sample preparation for the PCR. Among the variety of different methods of sample preparation, the most widespread are the methods based on chemical lysis of cell membranes using chaotropic compounds, followed by purification of nucleic acids by solid-phase extraction using magnetic particles. This approach is implemented both in commercial kits for manual sample preparation and in various automated systems for the isolation of nucleic acids. The analysis of commercially available stations for the isolation of nucleic acids shows that their technical characteristics are similar: the duration of one isolation cycle is 40–90 minutes; the volume of the analyzed samples is from 0.1 to 2.0 ml; the number of simultaneously processed samples max – 96, min – 8. The method of the nucleic acid isolation is the magnetic particles. The main differences are in the type of analyzed samples, and technologies for lysis of the test material and DNA extraction. Our experience in the use of magnetic particle kits for the isolation of nucleic acids, both in stationary and in field laboratories confirms the effectiveness and reliability of this technology. Further development and improvement of the hardware for such work will, obviously, be aimed at miniaturizing the equipment, developing field portable automatic nucleic acid extraction stations, as well as integrating the process of sample preparation and analysis by PCR in one device.
About the Authors
M. S. TikhvinskiyRussian Federation
Mikhail Sergeevich Tikhvinskiy. Chief Group of the Scientific and Research Department. Candidate of Biological Sciences.
Oktyabrsky Avenue 119, Kirov 610000
A. A. Vorobiov
Russian Federation
Aleksey Anatolievich Vorobiov. Leading Researcher of the Scientific and Research Department. Doctor of Biological Sciences.
Oktyabrsky Avenue 119, Kirov 610000
Ya. A. Kibirev
Russian Federation
Yaroslav Aleksandrovich Kibirev. Chief of the Scientific and Research Department. Candidate of Biological Sciences.
Oktyabrsky Avenue 119, Kirov 610000
G. S. Usenko
Russian Federation
Gennadii Sergeevich Usenko. Senior Researcher of the Scientific and Research Department.
Oktyabrsky Avenue 119, Kirov 610000
A. I. Kozlov
Russian Federation
Artem Igorevich Kozlov. Junior researcher of the Scientific and Research Department. Candidate of Biological Sciences.
Oktyabrsky Avenue 119, Kirov 610000
S. G. Isupov
Russian Federation
Sergey Gennadevich Isupov. Deputy Chief of the Scientific and Research Department. Candidate of Medical Sciences.
Oktyabrsky Avenue 119, Kirov 610000
References
1. Bloomfield M., Balm M., Blackmore T. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don’t let culture go just yet? // Pathology. 2015. V. 47. P. 227-233. https://doi.org/10.1097/PAT.0000000000000233
2. Abayasekara L., Perera J., Chandrasekharan V. et al. Detection of bacterial pathogens from clinical specimens using conventional microbial culture and 16S metagenomics: a comparative study // BMC Infect. Dis. 2017. V. 17. Р. 631. https://doi.org/10.1186/s12879-017-2727-8
3. Murphy J., Bustin S. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard? // Expert Rev. Mol. Diagn. 2009. V. 9. P. 187–197. https://doi.org/10.1586/14737159.9.2.187
4. Kibirev Ya.A., Burlachuk S.E., Grudcina A.S. et al. Methods for identification of causative agents of dangerous and particularly dangerous infections based on the analysis of nucleic acids // Journal of NBC Protection Corps. 2018. V. 2 № 4. P. 22–35. (in Russian).
5. Demeke T., Jenkins R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnologyderived traits // Anal. Bioanal. Chem. 2010. V. 396. P. 1977-1990. https://doi.org/10.1007/s00216-009-3150-9
6. Maja Sidstedt M.,Rådström P., Hedman J. PCR inhibition in qPCR, dPCR and MPS—mechanisms and solutions // Anal. Bioanal. Chem. 2020. V. 412. P. 2009– 2023. https://doi.org/10.1007/s00216-020-02490-2
7. Shaphaev A.G., Tsirenov V., Chebuniba E.I. Fundamentals of Biotechnology. Publishing office VSGTU. 2005. 94 pp. (in Russian).
8. Wink M. An introduction to molecular biotechnology: molecular fundamentals, methods and application in modern biotechnology. Wiley-VCH. Weinheim. Germany. 2006.
9. Ali N., de Rampazzo R., Costa A. et al. Current nucleic acid extraction methods and their implications to point-of-care diagnostics // BioMed Res. Int. 2017. V. 2017. 9306564. https://doi.org/10.1155/2017/9306564
10. Hedman J., Rådström P. Overcoming inhibition in realtime diagnostic PCR // Meth. Mol. Biol. 2013. V. 943. P. 17–48. https://doi.org/10.1007/978-1-60327-353-4_2
11. Sidstedt M., Hedman J., Romsos E.L. et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR // Anal. Bioanal. Chem. 2018. V. 410. P. 2569–2583. https://doi.org/10.1007/s00216-018-0931-z
12. Wilson I. Inhibition and facilitation of nucleic acid amplification // Appl. Environ. Microbiol. 1997. V. 63. P. 3741–3751.
13. Rådström P., Knutsson R., Wolffs P., et al. PrePCR processing: Strategies to generate PCR-compatible samples // Mol. Biotechnol. 2004. V. 26. P. 133–146. https://doi.org/10.1385/MB:26:2:13
14. Antonova O.S., Korneva N.A., Belov Yu.V. et al. Methods of nucleic acids purification and separation in molecular biology (Review) // Nauchnoe Priborostroenie. 2010. V. 20. P. 3-9. (in Russian).
15. Eslami G., Khalatbari-Limaki S., Ehrampoush M.H. et al. Comparison of three different DNA extraction methods for Linguatula serrata as a food born pathogen // Iranian J. Parasitol. 2017. V. 12. P. 236-242.
16. Tan S.C., Yiap B.C. DNA, RNA, and protein extraction: the past and the present // J. Biomed. Biotechnol. 2009. V. 2009. 574398. https://doi.org/10.1155/2009/574398.
17. Oskam C.L., Haile J., McLay E. et al. Fossil avian eggshell preserves ancient DNA // Proc. R. Soc. B. 2010. V. 277. P. 1991–2000. http://doi.org/10.1098/rspb.2009.2019
18. Grachev M.A., Kuznetsova S.Yu., Sherbakova T.A. A method for the isolation of pure DNA for PCR // Molecular Biology. 2006. V. 40. P. 159-161. (in Russian).
19. Zähringer H. Don’t lose the thread. Product survey: Manual DNA extraction kits // Lab Times. 2012. V. 6, P. 52–56. URL: https://docplayer.net/53735876-Pure-dnadevoid-of-impurities-from.htm.
20. Doebler R.W., Erwin B., Hickerson A. et al. Continuous-flow, rapid lysis devices for biodefense nucleic acid diagnostic systems // JALA. 2009. V. 14. P. 119-125. https://doi.org/10.1016/j.jala.2009.02.010
21. Chacon-Cortes D., Griffiths L. Methods for extracting genomic DNA from whole blood samples: current perspectives // J. Biorepository Science for Applied Medicine, 2014. V. 2. P. 1–9. https://doi.org/10.2147/BSAM.S46573
22. Archer M. J., Lin B., Wang Z. et al. Magnetic bead-based solid phase for selective extraction of genomic DNA // Anal. Biochem. 2006. V. 355. P. 285-297. https://doi.org/10.1016/j.ab.2006.05.005
23. Thatcher S.A. DNA/RNA preparation for molecular detection // Clin. Chem. 2015. V. 61. P. 89–99. https://doi.org/10.1373/clinchem.2014.221374
24. Berensmeier S. Magnetic particles for the separation and purification of nucleic acids // Appl. Microbiol. Biotechnol. 2006. V. 73. P. 495–504. https://doi.org/10.1007/s00253-006-0675-0
25. Phillips K., McCallum N., Welch L. A comparison of methods for forensic DNA extraction: Chelex-100® and the QIAGEN DNA Investigator Kit // Forensic Sci. Int. Genet. 2012. V. 6. P. 282–285. https://doi.org/10.1016/j.fsigen.2011.04.018
26. Schrader C., Schielke A., Ellerbroek L. et al. PCR inhibitors—occurrence, properties and removal // J. App. Microb. 2012. V. 113. P. 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
27. de Boer R, Peters R, Gierveld S. et al. Improved detection of microbial DNA after bead-beating before DNA isolation // J. Microbiol. Methods. 2010. V. 80. P. 209–211. https://doi.org/10.1016/j.mimet.2009.11.009
28. Verheyen J., Kaiser R., Bozic M. et al. Extraction of viral nucleic acids: comparison of 5 automated nucleic acid extraction platforms // J. Clin. Virol. 2012. V. 54. P. 255–259. https://doi.org/0.1016/j.jcv.2012.03.008
29. Shipley M., Koehler J., Kulesh D. et al. Comparison of nucleic acid extraction platforms for detection of select biothreat agents for use in clinical resource limited settings // J. Microbiol. Methods. 2012. V. 91. P. 179–183. https://doi.org/10.1016/j.mimet.2012.06.008
30. Mauk M., Liu C., Sadik M. et al. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection // Methods Mol. Biol. 2015. V. 1256. P. 15–40. https://doi.org/10.1007/978-1-4939-2172-0_2
31. Saeed M., Ahmad M., Iram S. et al. GeneXpert technology. A breakthrough for the diagnosis of tuberculous pericarditis and pleuritis in less than 2 hours // Saudi Med. J. 2017. V. 38. No. 7. P. 699–705. https://doi.org/10.15537/smj.2017.7.17694
32. Poritz M., Blaschke A., Byington C. et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection // PLoS One. 2011. V. 6. e26047. https://doi.org/10.1371/journal.pone.0026047
Review
For citations:
Tikhvinskiy M.S., Vorobiov A.A., Kibirev Ya.A., Usenko G.S., Kozlov A.I., Isupov S.G. Current State of Method Development for PCR Sample Peparations. Journal of NBC Protection Corps. 2021;5(3):236-246. (In Russ.) https://doi.org/10.35825/2587-5728-2021-5-3-236-246. EDN: boyzhz