Monkeypox: A Little-Studied Biological Threat to Russia
https://doi.org/10.35825/2587-5728-2022-6-2-152-177
EDN: gukxjo
Abstract
Monkeypox is a natural focal zoonosis of rodents and monkeys living in the Congo Valley (clade CB) and West Africa (clade WA). The special interest in monkeypox is due to its pandemic spread, which began in May 2022. The aim of this article is to consider the danger of monkeypox due to the lack of knowledge about its nature, as well as existing achievements in the treatment and prevention of this disease. The information was collected mainly from Englishlanguage sources available through the PubMed and Google Scholar databases. The study was conducted in the following areas: the epidemiology of monkeypox outbreaks until May 2022; taxonomy and origin of monkeypox virus (MPV); morphology and life cycle of poxviruses; ecology and epidemiology of MPV; the clinical picture of monkeypox in humans with natural infection; monkeypox clinic in European homosexuals; clinical picture and pathomorphology of monkeypox in animals with artificial infection; immunoprophylaxis and therapy of monkeypox. It has been established that until May 2022 the appearance of MPV into nonendemic countries was limited to single cases of the disease. Because of that, the monkeypox pandemic that began in May 2022 looks atypical. The lowcontagious MPV (WA) that caused it did not occur in Nigeria until 2017. Its spread was facilitated by a new mechanism of infection through organized homosexual contacts. Therefore, monkeypox should no longer be considered a rare disease geographically limited to the countries of West and Central Africa. It is also necessary to take into account the possibility of activating the natural reservoirs of other poxviruses, as well as the realization of their epidemic potential through immunodeficient human populations, which reach 20% of the total population in the developed countries. At present, there are no vaccines or drugs whose efficacy and safety have been confirmed in epidemic foci of MPV with immunodeficient populations. Serious efforts should be made to identify manmade outbreaks of monkeypox; to the identification of possible zoonotic hosts of MPV in Russia; factors that support MPV in ecosystems; host factors that determine the severity of the disease, as well as facilitating animaltohuman and humantohuman transmission.
Keywords
About the Author
M. V. SupotnitskiyRussian Federation
Mikhail Vasilyevich Supotnitskiy. Senior Researcher. Chief Specialist. Candidate of Biological Sciences.
Entuziastov passage, 19, Moscow, 111024
References
1. Henderson D.A., Inglesby T.V., Bartlett J.G. Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense // J. Am. Med. Assoc. 1999. V. 281. P. 2127–2137. https://doi.org/10.1001/jama.281.22.2127
2. Henderson D.A., Fenner F: Recent events and observations pertaining to smallpox virus destruction in 2002 // Clin. Infect. Dis. 2001. V. 33. P. 1057–1059. https://doi.org/10.1086/323808
3. Chapman J.L., Nichols D.K., Martinez M.J. et al. Animal models of Orthopoxvirus infection // Vet. Pathol. 2010. V. 47, № 5. P. 852–870. https://doi.org/10.1177/0300985810378649
4. Fleming R.M. Is COVID-19 a bioweapon? A scientific and forensic investigation. Skyhorse Publishing, New York, 2021
5. Ladnyj I.D., Ziegler P., Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo // Bull. World Health Organ. 1972. V. 46. P. 593–597.
6. Mukinda V., Mwema G., Kilundu M. et al. Reemergence of human monkeypox in Zaire in 1996 // Lancet. 1997. V. 349, № 9063. P. 1449–1450. https://doi.org/10.1016/s0140-6736(05)63725-7
7. Arita I., Jezek Z., Khodakevich L., Ruti K. Human Monkeypox: A Newly Emerged Orthopoxvirus Zoonosis in the Tropical Rain Forests of Africa // Am. J. Trop. Med. Hyg. 1985. V. 34(4). P. 781–789. https://doi.org/10.4269/ajtmh.1985.34.781
8. Fenner F., Henderson D. A., Arita I. et al. Smallpox and its eradication, World Health Organization, Geneva, 1988.
9. Di Giulio D.B., Eckburg P.B. Human monkeypox: An emerging zoonosis // Lancet Infect. Dis. 2004. V. 4. P. 15–25. https://doi.org/10.1016/S1473-3099(03)00856-9
10. Chastel C. Human monkeypox // Pathol. Biol. 2009. V. 57, № 2. P. 175–183. https://doi.org/10.1016/j.patbio.2008.02.006
11. Sklenovska N., Van Ranst M. Emergence of monkeypox as the most important orthopoxvirus infection in humans // Front Public Health. 2018. V. 6. 241. https://doi.org/10.3389/fpubh.2018.00241
12. Heymann D.L., Simpson K. The evolving epidemiology of human monkeypox: questions still to be answered // J. Infect. Dis. 2021. V. 223(11). P. 1839–1841. https://doi.org/10.1093/infdis/jiab135
13. Reynolds M.G., Guagliardo S.A., Nakazawa Y. et al. Understanding orthopoxvirus host range and evolution: from the enigmatic to the usual suspects // Current Opinion in Virology. 2018. V. 28. P. 108–115. https://doi.org/10.1016/j.coviro.2017.11.012
14. Formenty P., Muntasir M.O., Damon I. et al. Human monkeypox outbreak caused by novel virus belonging to Congo Basin clade, Sudan, 2005 // Emerg. Infect. Dis. 2010. V. 16. P. 1539–1545. https://doi.org/10.3201/eid1610.100713
15. Haddad N. The presumed receptivity and susceptibility to monkeypox of European animal species // Infectious Diseases Now. 2022. https://doi.org/10.1016/j.idnow.2022.06.006
16. Alakunle E., Moens U., Nchinda G., Okeke M.I. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution // Viruses. 2020. V. 12. https://doi.org/10.3390/v12111257
17. Thompson C.H., Yager J. A., Van Rensburg I.B. Close relationship between equine and human molluscum contagiosum virus demonstrated by in situ hybridization // Res. Vet. Sci. 1998. V. 64. P. 157–161. https://doi.org/10.1016/s0034-5288(98)90012-1
18. Tulman E.R., Delhon G., Afonso C.L. et al. Genome of horsepox virus // J. Virol. 2006. V. 80(18). P. 9244–9258. https://doi.org/10.1128/JVI.00945-06
19. DiEuliis D., Berger K., Gronvall G. Biosecurity Implications for the Synthesis of Horsepox, an Orthopoxvirus // Health Security. 2017. https://doi.org/10.1089/hs.2017.0081
20. Lefkowitz E.J., Wang C., Upton C. Poxviruses: past, present and future // Virus research. 2006. V. 117. P. 105–118. https://doi.org/10.1016/j.virusres.2006.01.016
21. Haller S.L., Peng C., McFadden G., Rothenburg S. Poxviruses and the evolution of host range and virulence // Infect. Genet. Evol. 2014. V. 21. P. 15–40. https://doi.org/10.1016/j.meegid.2013.10.014
22. Hendrickson R.C., Wang C.. Hatcher E.L., Lefkowitz E.J. Orthopoxvirus genome evolution: The role of gene loss // Viruses. 2010. V. 2. P. 1933–1967. https://doi.org/10.3390/v2091933
23. Menachery V.D., Yount B.L., Debbink K. et al. SARS-like cluster of circulating bat coronavirus pose threat for human emergence // Nat. Med. 2015. V. 21, № 12. P. 1508–1513. https://doi.org/10.1038/nm.3985/
24. Hatcher E.L., Wang C., Lefkowitz E.J. Genome variability and gene content in chordopoxviruses: dependence on microsatellites // Viruses. 2015. V. 7(4). P. 2126–2146. https://doi.org/10.3390/v7042126
25. Douglass N., Dumbell K. Independent evolution of monkeypox and variola viruses // J. Virol. 1992. V. 66(12). P. 7565–7567. https://doi.org/10.1128/JVI.66.12.7565-7567.1992
26. Gubser G., Hue S., Kellam P. et al. Poxvirus genomes: a phylogenetic analysis // J. Gen. Virol. 2004. V. 85. P. 105–117. https://doi.org/10.1099/vir.0.19565-0
27. Erez N., Achdout H., Milrot E. Diagnosis of Imported Monkeypox, Israel, 2018 // Emerg. Infect. Dis. 2019. V. 25(5). P. 980–983. https://doi.org/10.3201/eid2505.190076
28. Vaughan A., Aarons E., Astbury J. et al. Human-to-human transmission of monkeypox virus, United Kingdom, October 2018 // Emerg. Infect. Dis. 2020. V. 26(4). P. 782–785. https://doi.org/10.3201/eid2604. 191164
29. Yong S.T., Ng O.T., Ho Z.J.M. et al. Imported Monkeypox, Singapore // Emerging Infectious Diseases. 2020. V. 26, № 8. P. 1826–1830. https://doi.org/10.3201/eid2608.191387
30. Brown K., Leggat P.A. Human Monkeypox: Current State of Knowledge and Implications for the Future // Trop. Med. Infect. Dis. 2016. V. 1(1). https://doi.org/10.3390/tropicalmed1010008
31. Quarleri J., Delpino M.V., Galvan V. Monkeypox: considerations for the understanding and containment of the current outbreak in non-endemic countries // Geroscience. 2022. 1–9. https://doi.org/10.1007/s11357-022-00611-6
32. Rao A.K., Schulte J., Chen T.H. et al. Monkeypox in a traveler returning from Nigeria-Dallas, Texas, July 2021 // MMWR Morb. Mortal. Wkly. Rep. 2022. V. 71(14). P. 509–516. https://doi.org/10.15585/mmwr.mm7114a1
33. Parker S., Crump R., Hartzler H., Buller R.M. Evaluation of Taterapox Virus in Small Animals // Viruses. 2017. V. 9(8). 203. https://doi.org/10.3390/v9080203
34. Esposito J.J., Sammons S.A., Frace A.M. Genome sequence diversity and clues to the evolution of variola (smallpox) virus // Science. 2006. V. 313. Р. 807–812. https://doi.org/10.1126/science.1125134
35. Chen N., Li G., Liszewski M.K. et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin // Virology. 2005. V. 340. P. 46–63. https://doi.org/10.1016/j.virol.2005.05.030
36. Sbrana E., Xiao S.Y., Newman P.C., Tesh R.B. Comparative pathology of North American and central African strains of monkeypox virus in a ground squirrel model of the disease // Am. J. Trop. Med. Hyg. 2007. V. 76. P. 155–164.
37. Kindrachuk J., Arsenault R., Kusalik A. et al. Systems kinomics demonstrates congo basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus // Mol. Cell. Proteom. 2012. V. 11. P. 1–12. https://doi.org/10.1074/mcp.M111.015701
38. McCollum F.M., Damon I.K. Human Monkeypox // Clinical Infectious Diseases. 2014. V. 58, Is. 2. P. 260–267. https://doi.org/10.1093/cid/cit703
39. Stagles M.J., Watson A.A., Boyd J.F. et al. The histopathology and electron microscopy of a human monkeypox lesion // Trans. R. Soc. Trop. Med. Hyg. 1985. V. 79(2). P. 192–202. https://doi.org/10.1016/0035-9203(85)90333-5
40. Gelderblom H.R., Madeley D. Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must? // Viruses. 2018. V. 10(4). Р. 142. https://doi.org/10.3390/v10040142
41. McFadden G. Poxvirus tropism // Nat. Rev. Microbiol. 2005. V. 3(3). P. 201–213. https://doi.org/10.1038/nrmicro1099
42. Marennikova S.S., Shchelkunov S.N. Pathogenic for humans poxviruses. 1998. (in Russian).
43. Cann J.A., Jahrling P.B., Hensley L.E., Wahl-Jensen V. Comparative pathology of smallpox and monkeypox in man and macaques // J. Comp. Pathol. 2013. V. 148(1). P. 6–21. https://doi.org/10.1016/j.jcpa.2012.06.007
44. Tree J.A., Hall G., Pearson G. et al. Sequence of pathogenic events in Cynomolgus macaques infected with aerosolized monkeypox virus // J. Virol. 2015. V. 89(8). P. 4335–4344. https://doi.org/10.1128/JVI.03029-14
45. Xiao S.Y., Sbrana E., Watts D.M. et al. Experimental infection of prairie dogs with monkeypox virus // Emerg. Infect. Dis. 2005. V. 11. P. 539–545. https://doi.org/10.3201/eid1104.040907
46. Rimoin A.W., Mulembakani P.M., Johnston S.C. et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo // Proc. Natl. Acad. Sci. USA. 2010. V. 107(37). P. 16262–16267. https://doi.org/10.1073/pnas.1005769107
47. Ogoina D., Izibewule J.H., Ogunleye A. et al. The 2017 human monkeypox outbreak in Nigeria. Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria // PLoS ONE. 2019. V. 14. P. 1–12. https://doi.org/10.1371/journal.pone.0214229
48. Sanche S., Lin E.T., Xu C. et al. High Contagiousness and RapidSpread of Severe Acute Respiratory Syndrome Coronavirus 2 // Emerg. Infect. Dis. 2020. V. 26, № 7. P. 1470–1477. https://doi.org/10.3201/eid2607.200282
49. Petrosillo N., Viceconte G., Ergonul O. et al. COVID-19, SARS and MERS: are they closely related? // Clin. Microbiol. Infect. 2020. V. 26(6). P. 729–734. См. https://pubmed.ncbi.nlm.nih.gov/32234451/ (дата обращения: 10.09.2020)
50. Gani R., Leach S. Transmission potential of smallpox in contemporary populations // Nature. 2001. V. 414. P. 748–751. https://doi.org/10.1038/414748a
51. Guerra F.M., Bolotin S., Lim G. et al. The basic reproduction number (R0) of measles: a systematic review // Lancet Infect Dis. 2017. V. 17(12). https://doi.org/10.1016/S1473-3099(17)30307-9
52. Levine R.S., Peterson A.T., Yorita K.L. et al. Ecological niche and geographic distribution of human monkeypox in Africa // PLoS ONE. 2007. V. 2, № 1. e176. https://doi.org/10.1371/journal.pone.0000176
53. Khodakevich L., Jeeek Z., Messinger D. Monkeypox virus: ecology and public health significance // Bulletin of the World Health Organization. 1988. V. 66, № 6. P. 747–752.
54. Hughes A.L., Irausquin S., Friedman R. The evolutionary biology of poxviruses // Infect. Genet. Evol. 2010. V. 10, № 1 (50. doi:10.1016/j.meegid.2009.10.001). https://doi.org/10.1016/j.meegid.2009.10.001
55. Bunge E.M., Hoet B., Chen L. et al. The changing epidemiology of human monkeypox. A potential threat? A systematic review // PLoS Negl. Trop. Dis. 2022. V. 16. e0010141. http://dx.doi.org/10.1098/rsos.171089
56. Goff A.J., Chapman J., Foster C. et al. A novel respiratory model of infection with monkeypox virus in cynomolgus macaques // J. Virol. 2011. V. 85(10). P. 4898–4909. https://doi.org/10.1128/JVI.02525-10
57. Titanji B.K., Tegomoh B., Nematollahi S. Monkeypox: A Contemporary Review for Healthcare Professionals // Open Forum Infect. Dis. 2022. V. 9(7). https://doi.org/10.1093/ofid/ofac310
58. Reed K.D., Melski J.W., Graham M.B. et al. The detection of monkeypox in humans in the western hemisphere // N. Engl. J. Med. 2004. V. 350. P. 342–350. https://doi.org/10.1056/NEJMoa032299
59. Antinori A., Mazzotta V., Vita S. et al. INMI Monkeypox Group. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy May 2022 // Euro Surveill. 2022. V. 27(22). 2200421. https://doi.org/10.2807/1560-7917
60. Peiró-Mestres A., Fuertes I., Camprubí-Ferrer D. et al. Hospital Clinic de Barcelona Monkeypox Study Group. Frequent detection of monkeypox virus DNA in saliva, semen, and other clinical samples from 12 patients, Barcelona, Spain, May to June 2022 // Euro Surveill. 2022 V/ 27(28). https://doi.org/10.2807/1560-7917.ES.2022.27.28.2200503
61. Nalca A., Livingston V.A., Garza N.L. et al. Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus // PLoS ONE. 2010. V. 5(9). https://doi.org/10.1371/journal.pone.0012880
62. Medical aspects of chemical and biological warfare / Ed. F.R. Sidell, E.T. Ta-fuqi, D.R. Franz. — Washington, 1997.
63. Borisevich S.V., Podkuyko V.N., Pirozhkov A.P., Terent'ev A.I., Krasnyansky V.P., Rozhdestvensky E.V., Nazarov S.V., Kuznecov S.L. Evolution of means and principles of smallpox vaccination // Journal of NBC Protection Corps. 2020. V. 4. № 1. P. 66–85. https://doi.org/10.35825/2587-5728-2020-4-1-66-85 (in Russian).
64. Laiton-Donato K., Ávila-Robayo P., Páez-Martinez A. et al. Progressive Vaccinia Acquired through Zoonotic Transmission in a Patient with HIV/ AIDS, Colombia // Emerg. Infect. Dis. 2020. V. 26(3). P. 601–605. https://doi.org/10.3201/eid2603.191365
65. Oldstone M. Viruses, Plagues and History. Past, Present and Future. Oxford University Press. London, 2020.
66. Vora S., Damon I., Fulginiti V. et al. Severe Eczema Vaccinatum in a Household Contact of a Smallpox Vaccinee // Clinical. Infectious Diseases. 2008. V. 46, Is. 10. P. 1555–1561. https://doi.org/10.1086/587668
Review
For citations:
Supotnitskiy M.V. Monkeypox: A Little-Studied Biological Threat to Russia. Journal of NBC Protection Corps. 2022;6(2):152-177. (In Russ.) https://doi.org/10.35825/2587-5728-2022-6-2-152-177. EDN: gukxjo