Preview

Journal of NBC Protection Corps

Advanced search

The Evaluation оf Potential Threat оf Animal’s Coronaviruses аs Human’s Patogens

https://doi.org/10.35825/2587-5728-2021-5-1-42-53

EDN: mbipwu

Abstract

The introduction of SARS-CoV-2 coronavirus from a natural reservoir into the human population subsequently caused the COVID-19 pandemic, that had a huge impact on all spheres of human activity dramatically increased interest in this group of viruses. Given that such an introduction of the coronavirus was already the third in a row in 21 century (after outbreaks caused by SARS-CoV and MERS-CoV viruses), there are quite good reasons to fear the appearance of new diseases, the etiological agents of which will be representatives of the Coronaviridae family in the future. The purpose of this review is to assess the potential risk of coronaviruses of animals as possible human pathogens. When preparing the review, the following data were used: data published in leading foreign journals as well as in Internet sources that address some aspects of the COVID-19 pandemic. The following main aspects of this problem are considered: a spontaneous formation during the evolution of animal coronaviruses, highly pathogenic to humans; a possibility of transmission of human coronavirus to animals, its genetic interaction with the coronavirus, the owner of which is this animal, the acquisition of viral progeny, a set of new properties and reverse transmission from animal to man a pathogen that may have increased pathogenicity. Animal coronaviruses are considered by belonging to a certain taxonomic group of their natural hosts. The main focus is on bat coronaviruses (as a reservoir of SARS-CoV, MERS-CoV and SARS-CoV-2 viruses), as well as avian coronaviruses, due to the potential ability of these animals to become vectors of spread of new emergent diseases and the coronaviruses of carnivores, due to the established during the COVID-19 pandemic fact of transmission of the SARS-CoV-2 virus from man to mink and from mink to man. Studying the features of molecular evolution it will help you better understand the mechanisms of occurrence and adaptation to humans pathogens of emergent viral diseases.

About the Authors

T. E. Sizikova
Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defens of the Russian Federation
Russian Federation

Tatyana Yevgenievna Sizikova. Researcher, Candidate of Biologic Sciences.

Oktyabrskaya Street 11, Sergiev Posad 141306



V. N. Lebedev
Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defens of the Russian Federation
Russian Federation

Vitaly Nikolayevich Lebedev. Leading researcher, Doctor of Biological Sciences, Professor.

Oktyabrskaya Street 11, Sergiev Posad 141306



S. V. Borisevich
Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defens of the Russian Federation
Russian Federation

Sergey Vladimirovich Borisevich. Head of Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defense of the Russian Federation, Corresponding member of Russian Academy of Sciences. Doctor of Biological Sciences, Professor.

Oktyabrskaya Street 11, Sergiev Posad 141306



References

1. Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. V. 579. P. 270–273. https://doi.org/10.1038/s41586-020-2012-7

2. Lorusso A., Calistri P., Petrini A. et al. Novel coronavirus (SARS-CoV-2) epidemic: a veterinary perspective // Vet. Ital. 2020. V. 56. № 1. https://doi.org/10.12834/vetit.2173.11599.1

3. Decaro N., Lorusso A. Novel human coronavirus (SARS-CoV-2): a lesson for animal coronavirus // Veterinary Microbiol. 2020. V. 244. P. 108693. https://doi.org/10.1016/jvetmic.2020,108693

4. Corman V.M., Baldwin H.J., Tateno A.F. et al. Evidence for an ancestral association of human coronavirus 229E with bats // J. Virol. 2015. V. 89. № 23. P. 11858–11870. https://doi.org/10.1128/JVI.01755-15

5. Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and sources of endemic human coronaviruses // Adv. Virus Res. 2018. V. 100. P. 163–188. https://doi.org/10.1016/bs.aivir.2018.01.001

6. Peiris J.S., Yuen K.Y., Osterhaus A.D., Stohr K. The severe acute respiratory syndrome // N. Engl. J. Med. 2003. V. 349. № 25. P. 2431–2441. https://doi.org/10.1056/NEJMra032498

7. Zaki A.M., van Boheemen S., Bestebroer T.M. et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia // N. Engl. J. Med. 2012. V. 367. № 19. P. 1814–1820. https://doi.org/10.1056/NEJMoa1211721

8. van der Hoek L., Pyrc K., Jebbink M.F. et al. Identification of a new human coronavirus // Nat. Med. 2004. V. 10. P. 368–373. https://doi.org/10.1038/nm1024

9. Fouchier R.A., Hartwig N.G., Bestebroer T.M. et al. A previously undescribed coronavirus associated with respiratory disease in humans // Proc. Natl. Acad. Sci. 2004. V. 101. № 16. P. 6212–6216. https://doi.org/10.1073/pnas.0400762101

10. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract // Proc. Soc. Exp. Biol. Med. 1966. V. 121. № 1. P. 190–193. https://doi.org/10.3181/00379727-121-30734

11. Reed S.E. The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: evidence of heterogeneity among 229E-related strains // J. Med. Virol. 1984. V. 13. № 2. P. 179–192. https://doi.org/10.1002/jmv.1890130208

12. McIntosh K., Dees J.H., Becker W.B. et al. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease // Proc. Natl. Acad. Sci. 1967. V. 57. № 4. P. 933–940. https://doi.org/10.1073/pnas.57.4.933

13. Woo P.C., Lau S.K., Chu C.M. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia // J. Virol. 2005. V. 79. № 2. P. 884–895. https://doi.org/10.1128/JVI.79.2.884-895.2005

14. Ksiazek T.G., Erdman D., Goldsmith C.S. et al. A novel coronavirus associated with severe acute respiratory syndrome // N. Engl. J. Med. 2003. V. 348. № 20. P. 1953–1966. https://doi.org/10.1056/NEJMoa030781

15. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China // Nature. 2020. V. 579. № 7798. P. 265–269. https://doi.org/10.1038/s41586-020-2008-3

16. Banner L.R., Lai M.M. Random nature of coronavirus RNA recombination in the absence of selection pressure // Virology. 1991. V. 185. № 1. P. 441– 445. https://doi.org/10.1016/0042-6822(91)90795-d

17. Huang C., Liu W.J., Xu W. et al. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene // PLoS Pathog. 2016. V. 12. № 9. P. e1005883. https://doi.org/10.1371/journal.ppat.1005883

18. McMahon B.J., Morand S., Gray J.S. Ecosystem change and zoonoses in the Anthropocene // Zoonoses Public Health. 2018. V. 65. P. 755–765. https://doi.org/10.1111/zph.12489

19. Lorusso A., Teodori L., Leone A. et al. A new member of the Pteropine Orthoreovirus species isolated from fruit bats imported to Italy // Infect. Genet. Evol. 2015. V. 30. P. 55–58. https://doi.org/10.1016/j.meegid.2014.12.006

20. Beena V., Saikumar G. Emerging horizon for bat borne viral zoonoses // Virus Dis. 2019. V. 30. № 4. P. 321–328. https://doi.org/10.1007/s13337-019-00548-z

21. Tsagkogeorga G., Parker J., Stupka E. et al. Phylogenomic analyses elucidate the evolutionary relationships of bats // Curr. Biol. 2013. V. 23. № 22. P. 2262–2267. https://doi.org/10.1016/j.cub.2013.09.014

22. Poon L.L., Chu D.K., Chan K.H. et al. Identification of a novel coronavirus in bats // J. Virol. 2005. V. 79. № 4. P. 2001–2009. https://doi.org/10.1128/JVI.79.4.2001-2009.2005

23. Wu Z., Yang L., Ren X. et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases // ISME J. 2016. V. 10. № 3. P. 609– 620. https://doi.org/10.1038/ismej.2015.138

24. Woo P.C., Wang M., Lau S.K. et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features // J. Virol. 2007. V. 81. № 4. P. 1574– 1585. https://doi.org/10.1128/JVI.02182-06

25. Chu D.K., Peiris J.S., Chen H. et al. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats // J. Gen. Virol. 2008. V. 89. P. 1282–1287. https://doi.org/10.1099/vir.0.83605-0

26. Tang X.C., Zhang J.X., Zhang S.Y. et al. Prevalence and genetic diversity of coronaviruses in bats from China // J. Virol. 2006. V. 80. № 15. P. 7481–7490. https://doi.org/10.1128/JVI.00697-06

27. Woo P.C., Lau S.K., Li K.S. et al Molecular diversity of coronaviruses in bats // Virology. 2006. V. 351. № 1. P. 180–187. https://doi.org/10.1016/j.virol.2006.02.041

28. Tao Y., Shi M., Chommanard C. et al. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history // J. Virol. 2017. V. 91. № 5. P. e01953-16. https://doi.org/10.1128/JVI.01953-16

29. Corman V.M., Ithete N.L., Richards L.R. et al. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat // J. Virol. 2014. V. 88. P. 11297–11303. https://doi.org/10.1128/JVI.01498-14

30. Corman V.M., Kallies R., Philipps H. et al. Characterization of a novel betacoronavirus related to Middle East respiratory syndrome coronavirus in European hedgehogs // J. Virol. 2014. V. 88. № 1. P. 717– 724. https://doi.org/10.1128/JVI.01600-13

31. Lau S.K., Woo P.C., Li K.S. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats // Proc. Natl. Acad. Sci. 2005. V. 10. № 39. P. 14040–14045. https://doi.org/10.1073/pnas.0506735102

32. Li T., Zhang Y., Fu L. et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication // Gene Ther. 2005. V. 12. № 9. P. 751–761. https://doi.org/10.1038/sj.gt.3302479

33. Wong A.C.P., Li X., Lau S.K.P., Woo P.C.Y. Global epidemiology of bat coronaviruses // Viruses. 2019. V. 11. № 2. P. 174. https://doi.org/10.3390/v11020174

34. Yang Y., Du L., Liu C. et al. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus // Proc. Natl. Acad. Sci. USA. 2014. V. 111. № 34. P. 12516– 12521. https://doi.org/10.1073/pnas.1405889111

35. Fan Y., Zhao K., Shi Z.L., Zhou P. Bat coronaviruses in China // Viruses. 2019. V. 11. № 3. P. 210. https://doi.org/10.3390/v11030210

36. Ren W., Qu X., Li W. et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin // J. Virol. 2008. V. 82. № 4. P. 1899–1907. https://doi.org/10.1128/JVI.01085-07

37. Ge X.Y., Li J.L., Yang X.L. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor // Nature. 2013. V. 503. P. 535– 538. https://doi.org/10.1038/nature12711

38. Hu B., Zeng L.P., Yang X.L. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus // PLoS Pathog. 2017. V. 13. e1006698. https://doi.org/10.1371/journal.ppat.1006698

39. Geldenhuys M., Mortlock M., Weyer J. et al. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa // PLoS One. 2018. V. 13. № 3. e0194527. https://doi.org/10.1371/journal.pone.0194527

40. Memish Z.A., Mishra N., Olival K.J. et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia // Infect. Dis. 2013. V. 19. № 11. P. 1819– 1823. https://doi.org/10.3201/eid1911.131172

41. Luo C.M., Wang N., Yang X.L. et al. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus // J. Virol. 2018. V. 92. № 13. e00116-18. https://doi.org/10.1128/JVI.00116-18

42. Gorbalenya A.E., Baker S.C., Baric R.S. et al. The species Severe acute respiratory syndromerelated coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Coronaviridae study group of the international committee on taxonomy of viruses // Nat. Microbiol. 2020. V. 5. P. 536–544. https://doi.org/10.1038/s41564-020-0695-z

43. Lam T.T., Shum M.H., Zhu H.C. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins // Nature. 2020. V. 583. № 7815. P. 282–285. https://doi.org/10.1038/s41586-020-2169-0

44. Tang X., Wu C., Li X. et al. On the origin and continuing evolution of SARS-CoV-2 // Nate Sci. Rev. 2020. V. 7. № 6. P. 1012–1023. https://doi.org/10.1093/nsr/nwaa036

45. Suryaman G.K., Soejoedono R.D., Setiyono A. et al. Isolation and characterization of avian coronavirus from healthy Eclectus parrots (Eclectus roratus) from Indonesia // Vet. World. 2019. V. 12. № 11. P. 1797–1805. https://doi.org/10.14202/vetworld.2019.1797-1805

46. Woo P.C., Lau S.K., Lam C.S. et al. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus // J. Virol. 2009. V. 83. № 2. P. 908–917. https://doi.org/10.1128/JVI.01977-08

47. Durães-Carvalho R., Caserta L.C., Barnabé A.C.S. et al. Coronaviruses detected in Brazilian wild birds reveal close evolutionary relationships with beta- and deltacoronaviruses isolated from mammals // J. Mol. Evol. 2015. V. 81. № 1-2. P. 21–23. https://doi.org/10.1007/s00239-015-9693-9

48. Guan Y., Zheng B.J., He Y.Q. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China // Science. 2003. V. 302. № 5643. P. 276–278. https://doi.org/10.1126/science.1087139

49. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract // Proc. Soc. Exp. Biol. Med. 1966. V. 121. № 1. P. 190–193. https://doi.org/10.3181/00379727-121-30734

50. Shi Z., Hu Z. A review of studies on animal reservoirs of the SARS coronavirus // Virus Res. 2008. V. 133. № 1. P. 74–87. https://doi.org/10.1016/j.virusres.2007.03.012

51. Arbour N., Day R., Newcombe J., Talbot P.J. Neuroinvasion by human respiratory coronaviruses // J. Virol. 2000. V. 74. № 19. P. 8913–8921. https://doi.org/10.1128/jvi.74.19.8913-8921.2000

52. Cockrell A.S., Peck K.M., Yount B.L. et al. Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection // J. Virol. 2014. V. 88. № 9. P. 5195–5199. https://doi.org/10.1128/JVI.03764-13

53. Chouljenko V.N., Lin X.Q., Storz J. et al. Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia // J. Gen. Virol. 2001. V. 82. № 12. P. 2927– 2933. https://doi.org/10.1099/0022-1317-82-12-2927

54. Chung J.Y., Kim H.R., Bae Y.C. et al. Detection and characterization of bovine-like coronaviruses from four species of zoo ruminants // Vet. Microbiol. 2011. V. 148. № 2–4. P. 396–401. https://doi.org/10.1016/j.vetmic.2010.08.035

55. Hemida M.G., Chu D.K.W., Perera R.A.P.M. et al. Coronavirus infections in horses in Saudi Arabia and Oman // Transbound. Emerg. Dis. 2017. V. 64. № 6. P. 2093–2103. https://doi.org/10.1111/tbed.12630

56. Hemida M.G., Elmoslemany A., Al-Hizab F. et al. Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) // Transbound. Emerg. Dis. 2017. V. 64. № 2. P. 344–353. https://doi.org/10.1111/tbed.12401

57. Sabir J.S., Lam T.T., Ahmed M.M. et al. Cocirculation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia // Science. 2016. V. 351. № 6268. P. 81–84. https://doi.org/10.1126/science.aac8608

58. Vergara-Alert J., van den Brand J.M., Widagdo W. et al. Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus // Emerg. Infect. Dis. 2017. V. 23. № 2. P. 232–240. https://doi.org/10.3201/eid2302.161239

59. Adney D.R., Brown V.R., Porter S.M. et al. Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding // Viruses. 2016. V. 8. № 8. P. 230. https://doi.org/10.3390/v8080230

60. Kandeil A., Gomaa M., Shehata M. et al. Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals // Emerg. Microbes Infect. 2019. V. 8. № 1. P. 103–108. https://doi.org/10.1080/22221751.2018.1560235

61. Shi J., Wen Z., Zhong G. et al. Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-Coronavirus-2 // Science. 2020. V. 368. № 6494. P. 1016–1020. https://doi.org/10.1126/science.abb7015

62. Andersen K.G., Rambaut A., Lipkin W.I. et al. The proximal origin of SARS-CoV-2 // Nat. Med. 2020. V. 26. № 4. P. 450–452. https://doi.org/10.1038/s41591-020-0820-9

63. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses // Nat. Rev. Microbiol. 2019. V. 17. № 3. P. 181–192. https://doi.org/10.1038/s41579-018-0118-9


Review

For citations:


Sizikova T.E., Lebedev V.N., Borisevich S.V. The Evaluation оf Potential Threat оf Animal’s Coronaviruses аs Human’s Patogens. Journal of NBC Protection Corps. 2021;5(1):42-53. (In Russ.) https://doi.org/10.35825/2587-5728-2021-5-1-42-53. EDN: mbipwu

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)