Preview

Вестник войск РХБ защиты

Расширенный поиск

Ферменты и их формы, используемые для обнаружения фосфорорганических соединений

https://doi.org/10.35825/2587-5728-2021-5-1-22-41

EDN: vtssdn

Аннотация

Ферменты способны эффективно взаимодействовать с различными фосфорорганическими соединениями (ФОС), вступая с ними в (био)химические реакции. Изменение исходной активности ферментов в результате их ингибирования ФОС, образование продуктов деструкции ФОС под действием гидролитических ферментов и пр. могут быть определены с использованием разных физико-химических методов и использованы в биоаналитических системах для определения концентраций ФОС. Цель обзора – анализ основных научных результатов, достигнутых за последние 10 лет в развитии аналитических систем на основе ферментов, статья предназначена для разработчиков детекторов ФОС. Показано, что требования к чувствительности биосенсоров исходят из норм содержания анализируемых веществ, детектируемых в/на объектах, подлежащих обязательному контролю. Основой для разработки наибольшего числа ультрачувствительных биосенсоров являются холинэстеразы, хотя и другие ферменты также могут успешно использоваться в роли биочувствительного элемента. Наиболее технологичным решением, приближенным к практическому внедрению, можно считать биоаналитические системы, использующие иммобилизованные ферменты. Улучшение пределов обнаружения ФОС может быть достигнуто за счет использования нанообъектов вкупе с современными методами регистрации сигнала, например, с наномеханическими детекторами и преобразователями сигнала. Это сочетание технических решений обеспечивает чувствительность анализа ФОС вплоть до пг/л. Существенное развитие в настоящее время получили «безреагентные» системы, ставшие основой для производства большого числа коммерчески доступных «стрипов» (тест-полосок) для экспрессного определения ФОС. Современные запросы стимулируют бурное развитие портативных и особенно «мобильных, портативных» биосенсоров, способных закрепляться, в том числе, на одежде. Прогресс, достигнутый в области создания аффинных аминокислотных последовательностей, в перспективе позволит создавать ферментные биосенсоры на любой поверхности.

Об авторах

И. В. Лягин
Московский государственный университет имени М.В. Ломоносова, Химический факультет
Россия

Лягин Илья Владимирович. Старший научный сотрудник кафедры химической энзимологии, канд. хим. наук.

119991, г. Москва, Ленинские горы, д. 1, стр. 3 



Е. Н. Ефременко
Московский государственный университет имени М.В. Ломоносова, Химический факультет
Россия

Ефременко Елена Николаевна. Заведующая лабораторией экобиокатализа кафедры химической энзимологии, д-р биол. наук, профессор.

119991, г. Москва, Ленинские горы, д. 1, стр. 3 



Список литературы

1. Лягин И.В., Ефременко Е.Н., Варфоломеев С.Д. Ферментные биосенсоры для определения пестицидов // Успехи химии. 2017. Т. 86. С. 339–355. https://doi.org/10.1070/RCR4678

2. Фосфорорганические нейротоксины: монография / Под ред. Варфоломеева С.Д., Ефременко Е.Н. М.: РИОР, 2020 380 с. https://doi.org/10.29039/02026-5

3. Samsidar A., Siddiquee S., Md Shaarani S. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs // Trends Food Sci. Technol. 2018. V. 71. P. 188–201. https://doi.org/10.1016/j.tifs.2017.11.011

4. Rotariu L., Lagarde F., Jaffrezic-Renault N., Bala C. Electrochemical biosensors for fast detection of food contaminants trends and perspective // Trac-Trends Anal. Chem. 2016. V. 79. P. 80–87. https://doi.org/10.1016/j.trac.2015.12.017

5. Díaz-González M., Gutiérrez-Capitán M., Niu P., et al. Electrochemical devices for the detection of priority pollutants listed in the EU water framework directive // Trac-Trends Anal. Chem. 2016. V. 77. P. 186–202. https://doi.org/10.1016/j.trac.2015.11.023

6. Songa E.A., Okonkwo J.O. Recent approaches to improving selectivity and sensitivity of enzymebased biosensors for organophosphorus pesticides: a review // Talanta. 2016. V. 155. P. 289–304. https://doi.org/10.1016/j.talanta.2016.04.046

7. Amine A., Arduini F., Moscone D., Palleschi G. Recent advances in biosensors based on enzyme inhibition // Biosens. Bioelectron. 2016. V. 76. P. 180–194. https://doi.org/10.1016/j.bios.2015.07.010

8. Narenderan S.T., Meyyanathan S.N., Babu B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques // Food Res. Int. 2020. V. 133. P. e109141. https://doi.org/10.1016/j.foodres.2020.109141

9. Lyagin I., Efremenko E. Enzymes, reacting with organophosphorus compounds as detoxifiers: diversity and functions // Int. J. Mol. Sci. 2021. V. 22. P. e1761. https://doi.org/10.3390/ijms22041761

10. Hua X., Eremin S.A., Liu F., Wang M. Antibody developments and immunoassays for organophosphorus chemicals: a review // Curr. Org. Chem. 2017. V. 21. P. 2640–2652. https://doi.org/10.2174/1385272821666170428122718

11. Duan N., Wu S., Dai S. et al. Advances in aptasensors for the detection of food contaminants // Analyst. 2016. V. 141. P. 3942–3961. https://doi.org/10.1039/c6an00952b

12. Mahmoudpour M., Torbati M., Mousavi M.-M. et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects // TrAC-Trends Anal. Chem. 2020. V. 129. P. e115943. https://doi.org/10.1016/j.trac.2020.115943

13. Mangas I., Estevez J., Vilanova E., França T.C. New insights on molecular interactions of organophosphorus pesticides with esterases // Toxicology. 2017. V. 376. P. 30–43. https://doi.org/10.1016/j.tox.2016.06.006

14. Liu D., Chen W., Wei J. et al. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides // Anal. Chem. 2012. V. 84. P. 4185–4191. https://doi.org/10.1021/ac300545p

15. Wang P., Li H., Hassan M.M. et al. Fabricating an acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in food // J. Agric. Food Chem. 2019. V. 67. P. 4071–4079. https://doi.org/10.1021/acs.jafc.8b07201

16. Long Q., Li H., Zhang Y., Yao S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides // Biosens. Bioelectron. 2015. V. 68. P. 168–174. https://doi.org/10.1016/j.bios.2014.12.046

17. Wu X., Wang P., Hou S. et al. Fluorescence sensor for facile and visual detection of organophosphorus pesticides using AIE fluorogens-SiO2 -MnO2 sandwich nanocomposites // Talanta. 2019. V. 198. P. 8–14. https://doi.org/10.1016/j.talanta.2019.01.082

18. Korram J., Dewangan L., Nagwanshi R. et al. A carbon quantum dot–gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase // New J. Chem. 2019. V. 43. P. 6874–6882. https://doi.org/10.1039/C9NJ00555B

19. Yang M., Liu M., Wu Z. et al. Carbon dots codoped with nitrogen and chlorine for "off-on" fluorometric determination of the activity of acetylcholinesterase and for quantification of organophosphate pesticides // Microchim. Acta. 2019. V. 186. P. e585. https://doi.org/10.1007/s00604-019-3715-z

20. Cai Y., Fang J., Wang B. et al. A signal-on detection of organophosphorus pesticides by fluorescent probe based on aggregation-induced emission // Sens. Actuator. B-Chem. 2019. V. 292. P. 156–163. https://doi.org/10.1016/j.snb.2019.04.123

21. Silletti S., Rodio G., Pezzotti G. et al. An optical biosensor based on a multiarray of enzymes for monitoringa large set of chemical classes in milk // Sens. Actuator. B-Chem. 2015. V. 215. P. 607–617. https://doi.org/10.1016/j.snb.2015.03.092

22. Huang N., Qin Y., Li M. et al. A sensitive fluorescence assay of organophosphorus pesticides using acetylcholinesterase and copper-catalyzed click chemistry // Analyst. 2019. V. 144. P. 3436–3441. https://doi.org/10.1039/C9AN00260J

23. Yao T., Liu A., Liu Y. et al. Ratiometric fluorescence sensor for organophosphorus pesticide detection based on opposite responses of two fluorescence reagents to MnO2 nanosheets // Biosens. Bioelectron. 2019. V. 145. P. e111705. https://doi.org/10.1016/j.bios.2019.111705

24. Chungchai W., Amatatongchai M., Meelapsom R. et al. Development of a novel three-dimensional microfluidic paper-based analytical device (3D-μPAD) for chlorpyrifos detection using graphene quantum-dot capped gold nanocomposite for colorimetric assay // Int. J. Environ. Anal. Chem. 2020. V. 100. P. 1160–1178. https://doi.org/10.1080/03067319.2019.1650921

25. Cao J., Wang M., She Y. et al. Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles // Microchim. Acta. 2019. V. 186. P. e390. https://doi.org/10.1007/s00604-019-3485-7

26. Jin L., Hao Z., Zheng Q. et al. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food // Anal. Chim. Acta. 2020. V. 1100. P. 215–224. https://doi.org/10.1016/j.aca.2019.11.067

27. Duan R., Hao X., Li Y., Li H. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode // Sens. Actuator. B-Chem. 2020. V. 308. P. e127672. https://doi.org/10.1016/j.snb.2020.127672

28. Cetrangolo G.P., Gori C., Rusko J. et al. Determination of picomolar concentrations of paraoxon in human urine by fluorescence-based enzymatic assay // Sensors. 2019. V. 19. P. e4852. https://doi.org/10.3390/s19224852

29. Yan X., Li H., Wang X., Su X. A novel fluorescence probing strategy for the determination of parathion-methyl // Talanta. 2015. V. 131. P. 88–94. https://doi.org/10.1016/j.talanta.2014.07.032

30. Yan X., Li H., Yan Y., Su X. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots // Food Chem. 2015. V. 173. P. 179–184. https://doi.org/10.1016/j.foodchem.2014.09.152

31. Zhang F., Liu Y., Ma P. et al. A Mn-doped ZnS quantum dots-based ratiometric fluorescence probe for lead ion detection and "off-on" strategy for methyl parathion detection // Talanta. 2019. V. 204. P. 13–19. https://doi.org/10.1016/j.talanta.2019.05.071

32. Thakur S., Kumar P., Reddy M.V. et al. Enhancement in sensitivity of fluorescence based assay for organophosphates detection by silica coated silver nanoparticles using organophosphate hydrolase // Sens. Actuator. B-Chem. 2013. V. 178. P. 458–464. https://doi.org/10.1016/j.snb.2013.01.010

33. Thakur S., Reddy M.V., Siddavattam D., Paul A.K. A fluorescence based assay with pyranine labeled hexa-histidine tagged organophosphorus hydrolase (OPH) for determination of organophosphates // Sens. Actuator. B-Chem. 2012. V. 163. P. 153–158. https://doi.org/10.1016/j.snb.2012.01.024

34. Ibarra Bouzada L.M.E., Hernández S.R., Kergaravat S.V. Glyphosate detection from commercial formulations: comparison of screening analytic methods based on enzymatic inhibition // Int. J. Environ. Anal. Chem. 2021. in press. https://doi.org/10.1080/03067319.2019.1691176

35. Yan X., Li H., Han X., Su X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect // Biosens. Bioelectron. 2015. V. 74. P. 277–283. https://doi.org/10.1016/j.bios.2015.06.020

36. Diaz A.N., Sanchez F.G., Aguilar A. et al.. Fast stopped-flow enzymatic sensing of fenitrothion in grapes and orange juice // J. Food Compos. Anal. 2015. V. 42. P. 187–192. https://doi.org/10.1016/j.jfca.2015.04.005

37. Dong J., Yang H., Li Y. et al. Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatase-triggered reaction // Anal. Chim. Acta. 2020. V. 1131. P. 102–108. https://doi.org/10.1016/j.aca.2020.07.048

38. Meng X., Wei J., Ren X. et al. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2 O2 -sensitive quantum dots/bi-enzyme // Biosens. Bioelectron. 2013. V. 47. P. 402–407. https://doi.org/10.1016/j.bios.2013.03.053

39. Sahub C., Tuntulani T., Nhujak T., Tomapatanaget B. Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide // Sens. Actuator. B-Chem. 2018. V. 258. P. 88–97. https://doi.org/10.1016/j.snb.2017.11.072

40. Huang S., Yao J., Chu X. et al. One-step facile synthesis of nitrogen-doped carbon dots: a ratiometric fluorescent probe for evaluation of acetylcholinesterase activity and detection of organophosphorus pesticides in tap water and food // J. Agric. Food Chem. 2019. V. 67. P. 11244–11255. https://doi.org/10.1021/acs.jafc.9b03624

41. Sahin A., Dooley K., Cropek D.M. et al. A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase // Sens. Actuator. B-Chem. 2011. V. 158. P. 353–360. https://doi.org/10.1016/j.snb.2011.06.034

42. Drechsel L., Schulz M., von Stetten F. et al. Electrochemical pesticide detection with AutoDip-a portable platform for automation of crude sample analyses // Lab Chip. 2015. V. 15. P. 704–710. https://doi.org/10.1039/c4lc01214c

43. Zhao H., Ji X., Wang B. et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection // Biosens. Bioelectron. 2015. V. 65. P. 23–30. https://doi.org/10.1016/j.bios.2014.10.007

44. He L., Cui B., Liu J. et al. Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion // Sens. Actuator. B-Chem. 2018. V. 258. P. 813–821. https://doi.org/10.1016/j.snb.2017.11.161

45. Wei W., Dong S., Huang G. et al. MOF-derived Fe2 O3 nanoparticle embedded in porous carbon as electrode materials for two enzyme-based biosensors // Sens. Actuator. B-Chem. 2018. V. 260. P. 189–197. https://doi.org/10.1016/j.snb.2017.12.207

46. Lang Q., Han L., Hou C. et al. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide // Talanta. 2016. V. 156-157. P. 34–41. https://doi.org/10.1016/j.talanta.2016.05.002

47. Kaur N., Thakur H., Prabhakar N. Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate // J. Electroanal. Chem. 2016. V. 775. P. 121–128. https://doi.org/10.1016/j.jelechem.2016.05.037

48. Zou B., Chu Y., Xia J. Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes // Anal. Bioanal. Chem. 2019. V. 411. P. 2905–2914. https://doi.org/10.1007/s00216-019-01743-z

49. Chen D., Liu Z., Fu J. et al. Electrochemical acetylcholinesterase biosensor based on multi-walled carbon nanotubes/dicyclohexyl phthalate modified screen-printed electrode for detection of chlorpyrifos // J. Electroanal. Chem. 2017. V. 801. P. 185–191. https://doi.org/10.1016/j.jelechem.2017.06.032

50. Thakkar J.B., Gupta S., Prabha C.R. Acetylcholine esterase enzyme doped multiwalled carbon nanotubes for the detection of organophosphorus pesticide using cyclic voltammetry // Int. J. Biol. Macromol. 2019. V. 137. P. 895–903. https://doi.org/10.1016/j.ijbiomac.2019.06.162

51. Mahmoudi E., Fakhri H., Hajian A. et al. High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms // Bioelectrochemistry. 2019. V. 130. P. e107348. https://doi.org/10.1016/j.bioelechem.2019.107348

52. Song D., Wang Y., Lu X. et al. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides // Sens. Actuator. B-Chem. 2018. V. 267. P. 5–13. https://doi.org/10.1016/j.snb.2018.04.016

53. Lu X., Tao L., Song D. et al. Bimetallic Pd@Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides //Sens. Actuator. B-Chem. 2018. V. 255. P. 2575–2581. https://doi.org/10.1016/j.snb.2017.09.063

54. Jiang Y., Zhang X., Pei L. et al. Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor // Chem. Eng. J. 2018. V. 339. P. 547–556. https://doi.org/10.1016/j.cej.2018.01.111

55. Song D., Li Y., Lu X. et al. Palladiumcopper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides // Anal. Chim. Acta. 2017. V. 982. P. 168–175. https://doi.org/10.1016/j.aca.2017.06.004

56. Lu X., Li Y., Tao L. et al. Amorphous metal boride as a novel platform for acetylcholinesterase biosensor development and detection of organophosphate pesticides // Nanotechnology. 2019. V. 30. e055501. https://doi.org/10.1088/1361-6528/aaee3f

57. Hu T., Xu J., Ye Y. et al. Visual detection of mixed organophosphorous pesticide using QDAChE aerogel based microfluidic arrays sensor // Biosens. Bioelectron. 2019. V. 136. P. 112–117. https://doi.org/10.1016/j.bios.2019.04.036

58. Sigolaeva L.V., Gladyr S.Y., Mergel O. et al. Easy-preparable butyrylcholinesterase/ microgel construct for facilitated organophosphate biosensing // Anal. Chem. 2017. V. 89. P. 6091–6098. https://doi.org/10.1021/acs.analchem.7b00732

59. Matějovský L., Pitschmann V. A strip biosensor with guinea green B and fuchsin basic color indicators on a glass nanofiber carrier for the cholinesterase detection of nerve agents // ACS Omega. 2019. V. 4. P. 20978–20986. https://doi.org/10.1021/acsomega.9b02153

60. Febbraio F., Merone L., Cetrangolo G.P. et al. Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides // Anal. Chem. 2011. V. 83. P. 1530–1536. https://doi.org/10.1021/ac102025z

61. Zhao Y., Zhang W., Lin Y., Du D. The vital function of Fe3 O4 @Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion // Nanoscale. 2013. V. 5. P. 1121–1126. https://doi.org/10.1039/c2nr33107a

62. Anh D.H., Cheunrungsikul K., Wichitwechkarn J., Surareungchai W. A colorimetric assay for determination of methyl parathion using recombinant methyl parathion hydrolase // Biotechnol. J. 2011. V. 6. P. 565–571. https://doi.org/10.1002/biot.201000348

63. Mishra R.K., Vinu Mohan A.M., Soto F. et al. A microneedle biosensor for minimally-invasive transdermal detection of nerve agents // Analyst. 2017. V. 142. P. 918–924. https://doi.org/10.1039/c6an02625g

64. Choi B.G., Park H., Park T.J. et al. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors // ACS Nano. 2010. V. 4. P. 2910–2918. https://doi.org/10.1021/nn100145x

65. Lee J.H., Park J.Y., Min K. et al. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents // Biosens. Bioelectron. 2010. V. 25. P. 1566–1570. https://doi.org/10.1016/j.bios.2009.10.013

66. Tuteja S.K., Kukkar M., Kumar P. et al. Synthesis and characterization of silica-coated silver nanoprobe for paraoxon pesticide detection // BioNanoScience. 2014. V. 4. P. 149–156. https://doi.org/10.1007/s12668-014-0129-6

67. Mishra R.K., Alonso G.A., Istamboulie G. et al. Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network // Sens. Actuator. B-Chem. 2015. V. 208. P. 228–237. https://doi.org/10.1016/j.snb.2014.11.011

68. Alonso G.A., Istamboulie G., Noguer T. et al. Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks // Sens. Actuator. B-Chem. 2012. V. 164. P. 22–28. https://doi.org/10.1016/j.snb.2012.01.052

69. El-Moghazy A.Y., Soliman E.A., Ibrahim H.Z. et al. Ultra-sensitive biosensor based on genetically engineered acetylcholinesterase immobilized in poly (vinyl alcohol)/Fe–Ni alloy nanocomposite for phosmet detection in olive oil // Food Chem. 2016. V. 203. P. 73–78. https://doi.org/10.1016/j.foodchem.2016.02.014

70. Jin R., Kong D., Zhao X. et al. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide // Biosens. Bioelectron. 2019. V. 141. P. e111473. https://doi.org/10.1016/j.bios.2019.111473

71. Montali L., Calabretta M.M., Lopreside A. et al. Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors // Biosens. Bioelectron. 2020. V. 162. e112232. https://doi.org/10.1016/j.bios.2020.112232

72. Chen D., Wang J., Xu Y. Highly sensitive lateral field excited piezoelectric film acoustic enzyme biosensor // IEEE Sens. J. 2013. V. 13. P. 2217–2222. https://doi.org/10.1109/JSEN.2012.2237508

73. Chen D., Wang J., Xu Y., Zhang L. A thin film electro-acoustic enzyme biosensor allowing the detection of trace organophosphorus pesticides // Anal. Biochem. 2012. V. 429. P. 42–44. https://doi.org/10.1016/j.ab.2012.07.002

74. Chen D., Wang J., Xu Y. et al . Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor // Biosens. Bioelectron. 2013. V. 41. P. 163–167. https://doi.org/10.1016/j.bios.2012.08.018

75. Zhang Y., Liu H., Yang Z. et al. An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides // Anal. Methods. 2015. V. 7. P. 6213–6219. https://doi.org/10.1039/C5AY01439E

76. Badawy M.E.I., Taktak N.E.M. Design and optimization of bioactive paper immobilized with acetylcholinesterase for rapid detection of organophosphorus and carbamate insecticides // Curr. Biotechnol. 2018. V. 7. P. 392–404. https://doi.org/10.2174/2211550108666181126121102

77. Qi F., Lan Y., Meng Z. et al . Acetylcholinesterasefunctionalized two-dimensional photonic crystals for the detection of organophosphates // RSC Adv. 2018. V. 8. P. 29385–29391. https://doi.org/10.1039/C8RA04953J

78. Qi F., Yan C., Meng Z. et al. Acetylcholinesterasefunctionalized two-dimensional photonic crystal for the sensing of G-series nerve agents // Anal. Bioanal. Chem. 2019. V. 411. P. 2577–2585. https://doi.org/10.1007/s00216-019-01700-w

79. Liu G., Guo W., Yin Z. Covalent fabrication of methyl parathion hydrolase on gold nanoparticles modified carbon substrates for designing a methyl parathion biosensor // Biosens. Bioelectron. 2014. V. 53. P. 440–446. https://doi.org/10.1016/j.bios.2013.10.025

80. Krepker M.A., Segal E. Dual-functionalized porous Si/hydrogel hybrid for label-free biosensing of organophosphorus compounds // Anal. Chem. 2013. V. 85. P. 7353–7360. https://doi.org/10.1021/ac4011815

81. Stoytcheva M., Zlatev R., Gochev V. et al. Amperometric biosensor precision improvement: application to organophosphorus pesticide determination // Anal. Methods. 2014. V. 6. P. 8232–8238. https://doi.org/10.1039/C4AY01792G

82. Mehta J., Dhaka S., Paul A.K. et al. Organophosphate hydrolase conjugated UiO-66- NH2 MOF based highly sensitive optical detection of methyl parathion // Environ. Res. 2019. V. 174. P. 46–53. https://doi.org/10.1016/j.envres.2019.04.018

83. Mehta J., Dhaka S., Bhardwaj N. et al. Application of an enzyme encapsulated metal-organic framework composite for convenient sensing and degradation of methyl parathion // Sens. Actuator. B-Chem. 2019. V. 290. P. 267–274. https://doi.org/10.1016/j.snb.2019.03.116

84. Goud K.Y., Teymourian H., Sandhu S.S. et al. OPAA/fluoride biosensor chip towards field detection of G-type nerve agents // Sens. Actuator. B-Chem. 2020. V. 320. P. e128344. https://doi.org/10.1016/j.snb.2020.128344

85. Zehani N., Kherrat R., Dzyadevych S.V., Jaffrezic-Renault N. A microconductometric biosensor based on lipase extracted from Candida rugosa for direct and rapid detection of organophosphate pesticides // Int. J. Environ. Anal. Chem. 2015. V. 95. P. 466–479. https://doi.org/10.1080/03067319.2015.1036864

86. Chen C.-H., Yang K.-L. A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products // Sens. Actuator. B-Chem. 2013. V. 181. P. 368–374. https://doi.org/10.1016/j.snb.2013.01.036

87. El-Moghazy A.Y., Soliman E.A., Ibrahim H.Z. et al. Biosensor based on electrospun blended chitosanpoly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil // Talanta. 2016. V. 155. P. 258–264. https://doi.org/10.1016/j.talanta.2016.04.018

88. Zhang Y., Arugula M.A., Wales M. et al. A novel layer-by-layer assembled multi-enzyme/ CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides // Biosens. Bioelectron. 2015. V. 67. P. 287–295. https://doi.org/10.1016/j.bios.2014.08.036

89. Dominguez R.B., Alonso G.A., Muñoz R. et al. Design of a novel magnetic particles based electrochemical biosensor for organophosphate insecticide detection in flow injection analysis // Sens. Actuator. B-Chem. 2015. V. 208. P. 491–496. https://doi.org/10.1016/j.snb.2014.11.069

90. Döring J., Rettke D., Rödel G. et al. Surface functionalization by hydrophobin-EPSPS fusion protein allows for the fast and simple detection of glyphosate // Biosensors. 2019. V. 9. P. e104. https://doi.org/10.3390/bios9030104

91. Lan W., Chen G., Cui F. et al. Development of a novel optical biosensor for detection of organophosphorus pesticides based on methyl parathion hydrolase immobilized by metal-chelate affinity // Sensors. 2012. V. 12. P. 8477–8490. https://doi.org/10.3390/s120708477

92. Kim B.S., Kim G.W., Heo N.S. et al. Development of a portable biosensor system for pesticide detection on a metal chip surface integrated with wireless communication // Food Sci. Biotechnol. 2015. V. 24. P. 743–750. https://doi.org/10.1007/s10068-015-0096-x

93. Yang M., Choi B.G., Park T.J. et al. Site-specific immobilization of gold binding polypeptide on gold nanoparticle-coated graphene sheet for biosensor application // Nanoscale. 2011. V. 3. P. 2950–2956. https://doi.org/10.1039/c1nr10197h

94. Istamboulie G., Durbiano R., Fournier D. et al. Biosensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column // Chemosphere. 2010. V. 78. P. 1–6. https://doi.org/10.1016/j.chemosphere.2009.10.037

95. Kergaravat S.V., Fabiano S.N., Soutullo A.R., Hernández S.R. Comparison of the performance analytical of two glyphosate electrochemical screening methods based on peroxidase enzyme inhibition // Microchem. J. 2021. V. 160, Part A. P. e105654. https://doi.org/10.1016/j.microc.2020.105654

96. Gomari M.M., Saraygord-Afshari N., Farsimadan M. et al. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry // Biotechnol. Adv. 2020. V. 45. P. e107653. https://doi.org/10.1016/j.biotechadv.2020.107653

97. Martynko E., Kirsanov D. Application of chemometrics in biosensing: a review // Biosensors. 2020. V. 10. P. e100. https://doi.org/10.3390/bios10080100

98. Mishra R.K., Barfidokht A., Karajic A. et al. Wearable potentiometric tattoo biosensor for onbody detection of G-type nerve agents simulants // Sens. Actuator. B-Chem. 2018. V. 273. P. 966-972. https://doi.org/10.1016/j.snb.2018.07.001

99. Fleischauer V., Heo J. An organophosphate sensor based on photo-crosslinked hydrogelentrapped E. coli // Anal. Sci. 2014. V. 30. P. 937–942. https://doi.org/10.2116/analsci.30.937

100. Tang X., Liang B., Yi T. et al. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates // Enzyme Microb. Technol. 2014. V. 55. P. 107–112. https://doi.org/10.1016/j.enzmictec.2013.10.006

101. Zhang H., Li Q., Ye T., Zhang Z., Li L. Optimization of the whole-cell catalytic activity of recombinant Escherichia coli cells with surfaceimmobilized organophosphorus hydrolase // J. Environ. Biol. 2013. V. 34. P. 315–319.

102. Liu R., Yang C., Xu Y. et al. Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates // J. Agric. Food Chem. 2013. V. 61. P. 7810–7816. https://doi.org/10.1021/jf402999b

103. Tang X., Zhang T., Liang B. et al. Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons // Biosens. Bioelectron. 2014. V. 60. P. 137–142. https://doi.org/10.1016/j.bios.2014.04.001

104. Liang B., Han L. Displaying of acetylcholinesterase mutants on surface of yeast for ultra-trace fluorescence detection of organophosphate pesticides with gold nanoclusters // Biosens. Bioelectron. 2020. V. 148. P. e111825. https://doi.org/10.1016/j.bios.2019.111825

105. Kim С., Choi B.H., Seo J.H. et al. Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds // Biosens. Bioelectron. 2013. V. 41. P. 199–204. https://doi.org/10.1016/j.bios.2012.08.022

106. Efremenko E., Lyagin I., Senko O. et al. Bioluminescent nano- and micro-biosensing elements for detection of organophosphorus compounds / Eds. Rai M., Reshetilov A., Plekhanova Y., Ingle A.P. // Macro, Micro, and Nano-Biosensors. Springer, Cham, 2021. Ch. 14. P. 239–261. https://doi.org/10.1007/978-3-030-55490-3_14

107. Tamayo J., Kosaka P.M., Ruz J.J. et al. Biosensors based on nanomechanical systems // Chem. Soc. Rev. 2013. V. 42. P. 1287–1311. https://doi.org/10.1039/C2CS35293A

108. Arduini F., Moscone D. Chapter Five – Multifarious aspects of electrochemical paper-based (bio)sensors / Ed. Merkoçi A. // Comprehensive Analytical Chemistry. Elsevier, Netherlands, Amsterdam. Volume 89. 2020. Chapter 5. P. 139–161. https://doi.org/10.1016/bs.coac.2020.01.001

109. Al Mamun M.A., Yuce M.R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications // Adv. Funct. Mater. 2020. V. 30. Pe2005703. https://doi.org/101002/adfm.202005703

110. Yucesoy D.T., Khatayevich D., Tamerler C., Sarikaya M. Rationally designed chimeric solid-binding peptides for tailoring solid interfaces // Med. Devices Sens. 2020. V. 3. e10065. https://doi.org/10.1002/mds3.10065

111. Yuan M., Yu J., Cao H., Xu F. Effective improvement in performance of a miniature FIAcalorimetric biosensing system via denoising column addition and flow rate optimization // Sens. Actuator. B-Chem. 2016. V. 229. P. 492–498. https://doi.org/10.1016/j.snb.2016.01.068

112. Li S., Zhao J., Huang R. et al. Use of high-throughput enzyme-based assay with xenobiotic metabolic capability to evaluate the inhibition of acetylcholinesterase activity by organophosphorus pesticides // Toxicol. In Vitro. 2019. V. 56. P. 93–100. https://doi.org/10.1016/j.tiv.2019.01.002


Рецензия

Для цитирования:


Лягин И.В., Ефременко Е.Н. Ферменты и их формы, используемые для обнаружения фосфорорганических соединений. Вестник войск РХБ защиты. 2021;5(1):22-41. https://doi.org/10.35825/2587-5728-2021-5-1-22-41. EDN: vtssdn

For citation:


Lyagin I.V., Efremenko E.N. Enzymes and Their Forms Used in Detection of Organophosphorus Compounds. Journal of NBC Protection Corps. 2021;5(1):22-41. (In Russ.) https://doi.org/10.35825/2587-5728-2021-5-1-22-41. EDN: vtssdn

Просмотров: 219


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)