Enhancing viral pathogen functions – how it's done within synthetic biology technologies abroad
https://doi.org/10.35825/2587-5728-2025-9-3-214-227
Abstract
Highlights
- Modern synthetic biology technologies enable the creation of gain-of-function (GOF) viruses capable of causing infectious processes in humans, animals, and plants.
- GOF virus-induced infections may present with atypical symptoms and internal organ damage, complicating timely diagnosis and reducing treatment efficacy.
- There are no conventional mechanisms to prevent the creation and spread of synthetic pathogens.
- The digitization of synthetic biology allows pathogens to be transmitted as digital data and reassembled in vitro.
Relevance. Synthetic biology technologies, including genome editing and virus synthesis, are now accessible even to small laboratories and are actively used to modify pathogens affecting humans, animals, and plants.
Purpose of the study is to demonstrate how GOF viruses can be created abroad using synthetic biology technologies and assess their potential pathogenic effects.
Study base sources. English-language publications from the PubMed database.
Method. Analytical approach, following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.
Results. Currently, synthetic virus construction primarily employs two methods: Gibson assembly, Transformationassociated recombination (TAR), including TAR cloning in Saccharomyces cerevisiae yeast.Viral genomes are assembled from oligonucleotide fragments with targeted modifications, enabling the production of synthetic viruses with designed properties, including GOF traits. The study also identified molecular markers distinguishing synthetic viruses from natural strains.
Conclusion. Advances in synthetic biology have created a new reality – the potential for biological warfare where the fact of an attack, its perpetrators, and the means used may remain undetectable. This situation establishes a fundamentally new paradigm of biological threats to medicine, veterinary science, and agriculture, necessitating the development of international risk management mechanisms.
About the Authors
M. V. SupotnitskiyRussian Federation
Mikhail V. Supotnitskiy - Senior Researcher, Chief Specialist, Cand. Sci. (Biol.)
Entuziastov Passage, 19, Moscow 111024
N. V. Shachneva
Russian Federation
Natalia V. Shachneva - Researcher of the Department
Entuziastov Passage, 19, Moscow 111024
References
1. Schindler D. Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology. Bioengineering (Basel). 2020;7(4):137. https://doi.org/10.3390/bioengineering7040137
2. Wu Y, Gao S, Liu G, Wang M, Tan R, Huang B, Tan W. Development of viral infectious clones and their applications based on yeast and bacterial artificial chromosome platforms. Mol Biomed. 2025;6(1):26. https://doi.org/10.1186/s43556-025-00266-7
3. Venter JC. Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life. New York: Viking; 2013.
4. Venter JC, Glass JI, Hutchison CA 3rd, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell. 2022;185(15):2708-24. https://doi.org/10.1016/j.cell.2022.06.046
5. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319(5867):1215-20. https://doi.org/10.1126/science.1151721
6. Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol. 2000;74(3):1393-406. https://doi.org/10.1128/jvi.74.3.1393-1406.2000
7. Onishchenko GG, Sizikova TE, Lebedev VN, Borisevich SV. New representatives of the genus Orthopoxvirus. Infectious Diseases: News, Opinions, Training [Infektsionnye Bolezni: Novosti, Mneniya, Obuchenie]. 2023;12(2):8-13. (in Russian). https://doi.org/10.33029/2305-3496-2023-12-2-8-13
8. Koster CC, Postma ED, Knibbe E, Cleij C, Daran-Lapujade P. Synthetic Genomics From a Yeast Perspective. Front Bioeng Biotechnol. 2022;10:869486. https://doi.org/10.3389/fbioe.2022.86948
9. Kouprina N, Larionov V. Selective isolation of genomic loci from complex genomes by transformationassociated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc. 2008;3(3):371-7. https://doi.org/10.1038/nprot.2008.5
10. Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget. 2023;14:1009-33. https://doi.org/10.18632/oncotarget.28546
11. Yang L, Tian L, Li L, Liu Q, Guo X, Zhou Y, et al. Efficient assembly of a large fragment of monkeypox virus genome as a qPCR template using dual-selection based transformation-associated recombination. Virol Sin. 2022;37(3):341-7. https://doi.org/10.1016/j.virs.2022.02.009
12. Tulman ER, Delhon G, Afonso CL, Lu Z, Zsak L, Sandybaev NT, et al. Genome of horsepox virus. J Virol. 2006;80(18):9244-58. https://doi.org/10.1128/JVI.00945-06
13. Noyce RS, Lederman S, Evans DH. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 2018;13(1):e0188453. https://doi.org/10.1371/journal.pone.0188453
14. Yao XD, Evans DH. High-frequency genetic recombination and reactivation of orthopoxviruses from DNA fragments transfected into leporipoxvirus-infected cells. J Virol. 2003;77(13):7281-90. https://doi.org/10.1128/jvi.77.13.7281-7290.2003
15. Xie X, Lokugamage KG, Zhang X, Vu MN, Muruato AE, Menachery VD, Shi PY. Engineering SARS-CoV-2 using a reverse genetic system. Nat Protoc. 2021;16(3):1761-84. https://doi.org/10.1038/s41596-021-00491-8
16. Thi Nhu Thao T, Labroussaa F, Ebert N, V'kovski P, Stalder H, Portmann J, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature. 2020;582(7813):561-5. https://doi.org/10.1038/s41586-020-2294-9
17. Ye C, Chiem K, Park JG, Oladunni F, Platt RN 2nd, Anderson T, et al. Rescue of SARS-CoV-2 from a Single Bacterial Artificial Chromosome. mBio. 2020;11(5):e02168-20. https://doi.org/10.1128/mBio.02168-20
18. Menachery VD, Yount BL Jr, Debbink K, Agnihothram S, Gralinski LE, Plante JA, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21(12):1508-13. https://doi.org/10.1038/nm.3985
19. Wang K, Liu L, Li Y, Xu Q, Wang H, Yang X. Construction of HiBiT-tagged porcine deltacoronavirus via NanoBiT split-luciferase system and its utility in antiviral research. Vet Microbiol. 2025;307:110623. https://doi.org/10.1016/j.vetmic.2025.110623
20. Cheng J, Zhao Y, Xu G, Zhang K, Jia W, Sun Y, et al. The S2 Subunit of QX-type Infectious Bronchitis Coronavirus Spike Protein Is an Essential Determinant of Neurotropism. Viruses. 2019;11(10):972. https://doi.org/10.3390/v11100972
21. Whitby SM. The potential use of plant pathogens against crops. Microbes Infect. 2001;3(1):73–80. https://doi.org/10.1016/s1286-4579(00)01348-4
22. Rozhnjatovskij T, Zhultovskij Z. Biological Warfare. Threat and Reality. Moscow; 1959 (in Russian).
23. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 2011;12(9):938–54. https://doi.org/10.1111/j.1364-3703.2011.00752.x
24. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614–29. https://doi.org/10.1111/j.1364-3703.2012.00804.x
25. Schwelm A, Badstöber J, Bulman S, Desoignies N, Etemadi M, Falloon RE, et al. Not in your usual Top 10: protists that infect plants and algae. Mol Plant Pathol. 2018;19(4):1029–34. https://doi.org/10.1111/mpp.12580
26. Supotnitskiy MV. Biological Warfare against Agricultural Crops: Historical Aspects and Conventional Control. Journal of NBC Protection Corps. [Vestnik vojsk RHB zashhity]. 2025;9(1):44–56. EDN:vxkuif (in Russian). https://doi.org/10.35825/2587-5728-2025-9-1-44-56
27. Pasin F, Menzel W, Daròs JA. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. Plant Biotechnol J. 2018;17(6):1010-26. https://doi.org/10.1111/pbi.13084
28. Cooper B. Proof by synthesis of Tobacco mosaic virus. Genome Biol. 2014;15(5):R67. https://doi.org/10.1186/gb-2014-15-5-r67
29. Weiss T, Kamalu M, Shi H, Li Z, Amerasekera J, Zhong Z, et al. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. Nat Plants. 2025;11(5):967-76. https://doi.org/10.1038/s41477-025-01989-9
30. Grimsley N, Hohn B, Hohn T, Walden R. «Agroinfection», an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci U S A. 1986;83(10):3282-6. https://doi.org/10.1073/pnas.83.10.3282
31. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735-43. https://doi.org/10.1046/j.1365-313x.1998.00343.x
32. Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv. 2015;33(6 Pt 2):1024-42. https://doi.org/10.1016/j.biotechadv.2015.03.012
33. Lovato A, Faoro F, Gambino G, Maffi D, Bracale M, Polverari A, Santi L. Construction of a synthetic infectious cDNA clone of Grapevine Algerian latent virus (GALV-Nf) and its biological activity in Nicotiana benthamiana and grapevine plants. Virol J. 2014;11:186. https://doi.org/10.1186/1743-422X-11-186
34. Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci USA. 2008;105(50):19944-9. https://doi.org/10.1073/pnas.0808116105
35. Ng TF, Chen LF, Zhou Y, Shapiro B, Stiller M, Heintzman PD, et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci USA. 2014;111(47):16842-7. https://doi.org/10.1073/pnas.1410429111
36. Yu D, Smith GA, Enquist LW, Shenk T. Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol. 2002;76(5):2316-28. https://doi.org/10.1128/jvi.76.5.2316-2328.2002
37. Vashee S, Stockwell TB, Alperovich N, Denisova EA, Gibson DG, Cady KC, Miller K, et al. Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination. mSphere. 2017;2(5):e00331-17. https://doi.org/10.1128/mSphereDirect.00331-17
38. Liu XF, Wang X, Yan S, Zhang Z, Abecassis M, Hummel M. Epigenetic control of cytomegalovirus latency and reactivation. Viruses. 2013;5(5):1325-45. https://doi.org/10.3390/v5051325
39. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, et al. Insertional oncogenesis in 4 patients aſter retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132-42. https://doi.org/10.1172/JCI35700
40. Kämmerer U, Pekova S, Klement R. RT-PCR Test Targeting the Conserved 5'-UTR of SARS-CoV-2 Overcomes Shortcomings of the First WHO-Recommended RT-PCR Test. International Journal of Vaccine Theory, Practice, and Research. 2023;|3(1):818-46. https://doi.org/10.56098/ijvtpr.v3i1.71
Review
For citations:
Supotnitskiy M.V., Shachneva N.V. Enhancing viral pathogen functions – how it's done within synthetic biology technologies abroad. Journal of NBC Protection Corps. 2025;9(3):214-227. (In Russ.) https://doi.org/10.35825/2587-5728-2025-9-3-214-227