Preview

Вестник войск РХБ защиты

Расширенный поиск

Нерешенные и замалчиваемые научные проблемы, оставленные пандемией COVID‐19

https://doi.org/10.35825/2587-5728-2025-9-2-118-150

EDN: ehcise

Аннотация

Основные моменты

- противодействие пандемии COVID-19 в глобальном масштабе велось на основе сфальсифицированных представлений о вакцинах и сокрытии уже известных данных об иммунитете при коронавирусных инфекциях;

- глобальные меры против COVID-19, вопреки ожиданиям, часто применялись без учета известных иммунологических рисков, что требует пересмотра их стратегий для будущих пандемий;

- российская иммунология опасных инфекций, судя по публикациям ее лидеров, не извлекла для себя никаких уроков из ошибок, допущенных в ходе пандемии COVID-19.

Актуальность. Пандемия COVID‐19 обнажила научные проблемы в эпидемиологии и инфекционной иммунологии, о которых ранее либо не знали, либо, что еще хуже – знали, но замалчивали по причинам, далеким от науки.

 Цель исследования – выявить нерешенные и замалчиваемые научные проблемы, оставленные пандемией COVID-19.

 Источниковая база исследования. Обзорные и проблемные статьи в рецензируемых англоязычных научных журналах, доступные через глобальную сеть Интернет.

 Метод исследования. Аналитический. Использовались рекомендации Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Выявлено не менее 3 тыс. научных публикаций по особенностям эпидемического процесса, иммунологии болезни и осложнениям проводимой вакцинации. Из  них отобрано и проанализировано 116 обзорных статей.

 Обсуждение. Коронавирусные инфекции были хорошо изучены до пандемии COVID-19, однако в ходе глобальных мероприятий по ее ликвидации, накопленные ранее знания, не были использованы. Выявление механизмов развития эпидемии свелось к политическим обвинениям. Происхождение вируса осталось неизвестным. Вместо реальной иммунологии болезни врачам был навязан ее суррогат с фальсифицированной ролью антител. Иммунологические феномены, такие как антитело-зависимое усиление инфекции, патогенный прайминг, антигенный импринтинг, характерные для коронавирусных инфекций, замалчивались. Токсические и прионные свойства спайкового белка, использованного в качестве антигенного компонента, были скрыты от вакцинируемых векторными вакцинами на основе мРНК (Pfizer, Moderna и др.) и аденовирусов (OxfordAstraZeneca, Johnson & Johnson и др.). По действующим документам регуляторных органов они являются препаратами для соматической генной терапии, а не вакцинами. Научно обоснованных противоэпидемических мероприятий для противодействия таким пандемиям разработано не было.

 Заключение. Произошла не только пандемическая катастрофа, но и, что более опасно, произошел катастрофический обвал накопленных научных знаний. Они не использовались и не будут соответствовать будущим пандемиям из-за зацикленности на вакцинации, ради обоснования которой шли на фальсификации и подлоги, нарушения законов и Конституции. Необходимо переосмысление ошибок, допущенных в ходе пандемии COVID-19, и формирование новой научной базы, которая могла бы быть использована для противодействия эпидемиям, пандемиям и биопреступлениям будущего.

Об авторе

М. В. Супотницкий
Федеральное государственное бюджетное учреждение «27 Научный центр имени академика Н.Д. Зелинского» Министерства обороны Российской Федерации
Россия

 Супотницкий Михаил Васильевич - Главный специалист, канд. биол. наук, ст. науч. сотр. 

 111024,  г. Москва, проезд Энтузиастов, д. 19.
 



Список литературы

1. Ghai RR, Carpenter A, Liew AY, Martin KB, Herring MK, Gerber SI, et al. Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses. Emerg Infect Dis. 2021;27(4):1015–22. https://doi.org/10.3201/eid2704.203945

2. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81:104260. https://doi.org/10.1016/j.meegid.2020.104260

3. Basavaraju SV, Patton ME, Grimm K, Rasheed MAU, Lester S, Mills L, et al. Serologic Testing of US Blood Donations to Identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Reactive Antibodies: December 2019–January 2020. Clin Infect Dis. 2021;72(12):e1004-9. https://doi.org/10.1093/cid/ciaa1785

4. Lecis R, Mucedda M, Pidinchedda E, Pittau M, Alberti A. Correction to: Molecular identification of Betacoronavirus in bats from Sardinia (Italy): first detection and phylogeny. Virus Genes. 2021;57(5):474. https://doi.org/10.1007/s11262-021-01856-7

5. Blangiardo M, Cameletti M, Pirani M, Corsetti G, Battaglini M, Baio G. Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 pandemic. PLoS One. 2020;15(10):e0240286. https://doi.org/10.1371/journal.pone.0240286

6. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016;3(1):237–61. https://doi.org/10.1146/annurev-virology-110615-042301

7. Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol. 2020;15(3):359-86. https://doi.org/10.1007/s11481-020-09944-5

8. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S et al. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells. 2021;10(4):821. https://doi.org/10.3390/cells10040821

9. Kabbani N, Olds JL. Does COVID19 Infect the Brain? If So, Smokers Might Be at a Higher Risk. Mol Pharmacol. 2020;97(5):351-53. https://doi.org/10.1124/molpharm.120.000014

10. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology. 2006;350(2):358-69. https://doi.org/10.1016/j.virol.2006.02.003

11. Guruprasad L. Human coronavirus spike protein-host receptor recognition. Prog Biophys Mol Biol. 2021;161:39-53. https://doi.org/10.1016/j.pbiomolbio.2020.10.006

12. Zhang B, Zhou X, Zhu C, Song Y, Feng F, Qiu Y, et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front Mol Biosci. 2020;7:157. https://doi.org/10.3389/fmolb.2020.00157

13. Sattar S, Kabat J, Jerome K, Feldmann F, Bailey K, Mehedi M. Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2. Front Microbiol. 2023;14:1073789. https://doi.org/10.3389/fmicb.2023.1073789

14. Igyártó BZ, Qin Z. The mRNA-LNP vaccines – the good, the bad and the ugly? Front Immunol. 2024;15:1336906. https://doi.org/10.3389/fimmu.2024.1336906

15. Tetz G, Tetz V. Prion-like Domains in Spike Protein of SARS-CoV-2 Differ across Its Variants and Enable Changes in Affinity to ACE2. Microorganisms. 2022;10(2):280. https://doi.org/10.3390/microorganisms10020280

16. Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus. 2023;15(2):e34872. https://doi.org/10.7759/cureus.34872

17. Perez JCP, Chalmin CM, Montagnier L. Towards the emergence of a new form of the neurodegenerative Creutzfeldt-Jakob disease: Twenty six cases of CJD declared a few days after a COVID-19 vaccine Jab. International Journal of Vaccine Theory, Practice, and Research. 2023;3(1):727-53. URL:https://www.researchgate.net/publication/367167725 (дата обращения: 21.01.2025).

18. Farsalinos K, Eliopoulos E, Leonidas DD, Papadopoulos GE, Tzartos S, Poulas K. Nicotinic Cholinergic System and COVID-19: In Silico Identification of an Interaction between SARS-CoV-2 and Nicotinic Receptors with Potential Therapeutic Targeting Implications. Int J Mol Sci. 2020;21(16):5807. https://doi.org/10.3390/ijms21165807

19. Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, et al. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. 2020;7:658-63. https://doi.org/10.1016/j.toxrep.2020.04.012

20. Kopańska M, Batoryna M, Bartman P, Szczygielski J, Banaś-Ząbczyk A. Disorders of the Cholinergic System in COVID-19 Era–A Review of the Latest Research. Int J Mol Sci. 2022;23(2):672. https://doi.org/10.3390/ijms23020672

21. Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2012;65(1):1-46. https://doi.org/10.1124/pr.112.006809

22. Лурия С, Дарнелл Дж. Общая вирусология. М.: Изд. «Мир»; 1970. Luria SE, Darnell JE. [General Virology]. Moscow: Mir; 1970 (In Russian).

23. Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs. 2010;2(1):53-66. https://doi.org/4161/mabs.2.1.10788

24. Bong YS, Brown D, Chung E, Ananthaswamy N, Chen R, Lewoczko E, et al. S6P mutation in Delta and Omicron variant spike protein significantly enhances the efficacy of mRNA COVID-19 vaccines. Front Immunol. 2025;15:1495561. https://doi.org/10.3389/fimmu.2024.1495561

25. Hemida MG, Alnaeem A, Chu DK, Perera RA, Chan SM, Almathen F, et al. Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015. Emerg Microbes Infect. 2017;6(6):e56. https://doi.org/10.1038/emi.2017.44

26. Bachmann MF, Mohsen MO, Zha L, Vogel M, Speiser DE. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. 2021;6(1):2. https://doi.org/10.1038/s41541-020-00264-6

27. Dintzis HM, Dintzis RZ, Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci U S A. 1976;73(10):3671-5. https://doi.org/10.1073/pnas.73.10.3671

28. Bachmann MF, Zinkernagel RM. Neutralizing antiviral B cell responses. Annu Rev Immunol. 1997;15:235-70. https://doi.org/10.1146/annurev.immunol.15.1.235

29. Bachmann MF, Mohsen MO, Zha L, Vogel M, Speiser DE. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. 2021;6(1):2. https://doi.org/10.1038/s41541-020-00264-6

30. Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol. 2003;13(6):387-98. https://doi.org/10.1002/rmv.405

31. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18(1):46-61. https://doi.org/10.1038/nri.2017.106

32. Hawkes RA. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Aust J Exp Biol Med Sci. 1964;42:465-82. https://doi.org/10.1038/icb.1964.44

33. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246-251. https://doi.org/10.1016/j.jhin.2020.01.022

34. Shitrit P, Zuckerman NS, Mor O, Gottesman BS, Chowers M. Nosocomial outbreak caused by the SARS-CoV-2 Delta variant in a highly vaccinated population, Israel, July 2021. Euro Surveill. 2021;26(39):2100822. https://doi.org/10.2807/1560-7917.es.2021.26.39.2100822

35. Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T, Horzinek MC, et al. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol. 1990;64(3):1407-9. https://doi.org/10.1128/JVI.64.3.1407-1409.1990

36. Klepfer S, Reed AP, Martinez M, Bhogal B, Jones E, Miller TJ. Cloning and expression of FECV spike gene in vaccinia virus. Immunization with FECV S causes early death after FIPV challenge. Adv Exp Med Biol. 1995;380:235-41. https://doi.org/10.1007/978-1-4615-1899-0_38

37. Padron-Regalado E. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infect Dis Ther. 2020;9(2):255-74. https://doi.org/10.1007/s40121-020-00371-w

38. Li L, Wo J, Shao J, Zhu H, Wu N, Li M, et al. SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients. J Clin Virol. 2003;28(3):239-44. https://doi.org/10.1016/S1386-6532(03)00195-1

39. Gaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol. 2011;85(20):10582-97. https://doi.org/doi:10.1128/JVI.00671-11

40. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451(2):208-14. https://doi.org/10.1016/j.bbrc.2014.07.090

41. Houser KV, Broadbent AJ, Gretebeck L, Vogel L, Lamirande EW, Sutton T, et al. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog. 2017;13(8):e1006565. https://doi.org/10.1371/journal.ppat.1006565

42. Clay C, Donart N, Fomukong N, Knight JB, Lei W, Price L, et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol. 2012;86(8):4234-44. https://doi.org/10.1128/JVI.06791-11

43. Monsalvo AC, Batalle JP, Lopez MF, Krause JC, Klemenc J, Hernandez JZ, et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med. 2011;17(2):195-9. https://doi.org/10.1038/nm.2262

44. Openshaw PJ, Tregoning JS. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin Microbiol Rev. 2005;18(3):541-55. https://doi.org/10.1128/CMR.18.3.541-555.2005

45. Shimizu J, Sasaki T, Koketsu R, Morita R, Yoshimura Y, Murakami A, et al. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Sci Rep. 2022;12(1):15612. https://doi.org/10.1038/s41598-022-19993-w

46. Yahi N, Chahinian H, Fantini J. Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination? J Infect. 2021;83(5):607-35. https://doi.org/10.1016/j.jinf.2021.08.010

47. Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, et al. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol. 2022;152:172-82. https://doi.org/10.1016/j.molimm.2022.11.010

48. Wang Z, Deng T, Zhang Y, Niu W, Nie Q, Yang S, et al. ACE2 can act as the secondary receptor in the FcγR-dependent ADE of SARS-CoV-2 infection. iScience. 2022;25(1):103720. https://doi.org/10.1016/j.isci.2021.103720

49. Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: How First Exposure Shapes Lifelong Anti-Influenza Virus Immune Responses. J Immunol. 2019;202(2):335-40. https://doi.org/10.4049/jimmunol.1801149

50. Brown EL, Essigmann HT. Original Antigenic Sin: the Downside of Immunological Memory and Implications for COVID-19. mSphere. 2021;6(2):e00056-21. https://doi.org/10.1128/mSphere.00056-21

51. Francis TJr. Influenza: the new acquayantance. Ann Intern Med. 1953;39(2):203-21. https://doi.org/10.7326/0003-4819-39-2-203

52. Ma J, Dushoff J, Earn DJ. Age-specific mortality risk from pandemic influenza. J Theor Biol. 2011;288:29-34. https://doi.org/10.1016/j.jtbi.2011.08.003

53. Forresi J, Edeling MA. Immune imprinting of SARS-CoV-2 responses: changing first immune impressions. mSphere. 2024;9(4):e0075823. https://doi.org/10.1128/msphere.00758-23

54. Lyons-Weiler J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun. 2020;3:100051. https://doi.org/10.1016/j.jtauto.2020.100051

55. Vojdani A, Vojdani E, Kharrazian D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front Immunol. 2021;11:617089. https://doi.org/10.3389/fimmu.2020.617089

56. Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, et al. «Spikeopathy»: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11(8):2287. https://doi.org/10.3390/biomedicines11082287

57. Van Lint S, Renmans D, Broos K, Dewitte H, Lentacker I, Heirman C, et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines. 2015;14(2):235-51. https://doi.org/10.1586/14760584.2015.957685

58. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1-2):148-58. https://doi.org/10.1016/j.ymgme.2003.08.016

59. Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, et al. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics. 2022;14(12):2682. https://doi.org/10.3390/pharmaceutics14122682

60. Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597(7876):318-24. https://doi.org/10.1038/d41586-021-02483-w

61. Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 2023;42(21):e114760. https://doi.org/10.15252/embj.2023114760

62. Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles–From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano. 2021;15(11):16982-17015. https://doi.org/10.1021/acsnano.1c04996

63. Nuovo GJ, Magro C, Shaffer T, Awad H, Suster D, Mikhail S, et al. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann Diagn Pathol. 2021;51:151682. https://doi.org/10.1016/j.anndiagpath.2020.151682

64. Olszewska B, Zaryczańska A, Nowicki RJ, Sokołowska-Wojdyło M. Rare COVID-19 vaccine side effects got lost in the shuffle. Primary cutaneous lymphomas following COVID-19 vaccination: a systematic review. Front Med (Lausanne). 2024;11:1325478. https://doi.org/10.3389/fmed.2024.1325478

65. Hanna N, Heffes-Doon A, Lin X, Manzano De Mejia C, Botros B, Gurzenda E, et al. Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk. JAMA Pediatr. 2022;176(12):1268-70. https://doi.org/10.1001/jamapediatrics.2022.3581

66. Lin X, Botros B, Hanna M, Gurzenda E, De Mejia CM, Chavez M, et al. Transplacental transmission of the COVID-19 vaccine messenger RNA: evidence from placental, maternal, and cord blood analyses postvaccination. Am J Obstet Gynecol. 2024;230(6):e113-e116.22. https://doi.org/10.1016/j.ajog.2024.01.022

67. Xu Z, Tian J, Smith JS, Byrnes AP. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol. 2008;82(23):11705-13. https://doi.org/10.1128/JVI.01320-08

68. Brogna C, Cristoni S, Marino G, Montano L, Viduto V, Fabrowski M, et al. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics Clin Appl. 2023;17(6):e2300048. https://doi.org/10.1002/prca.202300048

69. Castruita JAS, Schneider UV, Mollerup S, Leineweber TD, Weis N, Bukh J, et al. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS. 2023;131(3):128-32. https://doi.org/10.1111/apm.13294

70. Thorp JA, Benavides A, Thorp MM, Biss K, Threet J, Mccullough P. Are COVID-19 Vaccines in Pregnancy as Safe and Effective as the Medical Industrial Complex Claim? Part I. Science, Public Health Policy, and the Law. 2025;6:2019-25. URL:https://publichealthpolicyjournal.com/are-covid-19-vaccines-in-pregnancy-as-safe-and-effective-as-the-medical-industrial-complex-claim-part-i/ (дата обращения: 13.02.2025).

71. Супотницкий МВ. Опасность мРНК-технологий. Вестник войск РХБ защиты. 2024;8(3):205-31. EDN:ifdujf. https://doi.org/10.35825/2587-5728-2024-8-3-205-231

72. Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics. 2022;14(6):1283. https://doi.org/10.3390/pharmaceutics14061283

73. Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One. 2012;7(7):e40385. https://doi.org/10.1371/journal.pone.0040385

74. Abbink P, Lemckert AA, Ewald BA, Lynch DM, Denholtz M, Smits S, et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol. 2007;81(9):4654-63. https://doi.org/10.1128/jvi.02696-06

75. Sallard E, Zhang W, Aydin M, Schröer K, Ehrhardt A. The Adenovirus Vector Platform: Novel Insights into Rational Vector Design and Lessons Learned from the COVID-19 Vaccine. Viruses. 2023;15(1):204. https://doi.org/10.3390/v15010204

76. Bos R, Rutten L, van der Lubbe JEM, Bakkers MJG, Hardenberg G, Wegmann F, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines. 2020;5:91. https://doi.org/10.1038/s41541-020-00243-x

77. Byrnes AP, Rusby JE, Wood MJ, Charlton HM. Adenovirus gene transfer causes inflammation in the brain. Neuroscience. 1995;66(4):1015-24. https://doi.org/10.1016/0306-4522(95)00068-t

78. Lawrence MS, Foellmer HG, Elsworth JD, Kim JH, Leranth C, Kozlowski DA, et al. Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther. 1999;6(8):1368-79. https://doi.org/10.1038/sj.gt.3300958

79. Cichon G, Boeckh-Herwig S, Schmidt HH, Wehnes E, Müller T, Pring-Akerblom P, et al. Complement activation by recombinant adenoviruses. Gene Ther. 2001;8(23):1794-800. https://doi.org/10.1038/sj.gt.3301611

80. Varnavski AN, Calcedo R, Bove M, Gao G, Wilson JM. Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naive and pre-immunized mice. Gene Ther. 2005;12(5):427-36. https://doi.org/10.1038/sj.gt.3302347

81. Stone D, Liu Y, Shayakhmetov D, Li ZY, Ni S, Lieber A. Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol. 2007;81(9):4866-71. https://doi.org/10.1128/JVI.02819-06

82. Mörz M. A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines (Basel). 2022;10(10):1651. https://doi.org/10.3390/vaccines10101651

83. Iba T, Levy JH. Thrombosis and thrombocytopenia in COVID-19 and after COVID-19 vaccination. Trends Cardiovasc Med. 2022;32(5):249-56. https://doi.org/10.1016/j.tcm.2022.02.008

84. Warkentin TE. Autoimmune Heparin-Induced Thrombocytopenia. J Clin Med. 2023;12(21):6921. https://doi.org/10.3390/jcm12216921

85. Elberry MH, Abdelgawad HAH, Hamdallah A, Abdella WS, Ahmed AS, Ghaith HS, et al. A systematic review of vaccine-induced thrombotic thrombocytopenia in individuals who received COVID-19 adenoviral-vector-based vaccines. J Thromb Thrombolysis. 2022;53(4):798-823. https://doi.org/10.1007/s11239-021-02626-w

86. D'Agostino V, Caranci F, Negro A, Piscitelli V, Tuccillo B, Fasano F, et al. A Rare Case of Cerebral Venous Thrombosis and Disseminated Intravascular Coagulation Temporally Associated to the COVID-19 Vaccine Administration. J Pers Med. 2021;11(4):285. https://doi.org/10.3390/jpm11040285

87. Marietta M, Coluccio V, Luppi M. Potential mechanisms of vaccine-induced thrombosis. Eur J Intern Med. 2022;105:1-7. https://doi.org/10.1016/j.ejim.2022.08.002

88. Baker AT, Boyd RJ, Sarkar D, Teijeira-Crespo A, Chan CK, Bates E, et al. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. Sci Adv. 2021;7(49):eabl8213. https://doi.org/10.1126/sciadv.abl8213

89. Banoun H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int J Mol Sci. 2023;24(13):10514. https://doi.org/10.3390/ijms241310514

90. Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci. 2004;61(21):2738-43. https://doi.org/10.1007/s00018-004-4242-5

91. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9. https://doi.org/10.1038%2Fnm1267

92. Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022;28(7):542-54. https://doi.org/10.1016/j.molmed.2022.04.007

93. Bansal S, Perincheri S, Fleming T, Poulson C, Tiffany B, Bremner RM, et al. Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. J Immunol. 2021;207(10):2405-10. https://doi.org/10.4049%2Fjimmunol.2100637

94. Krauson AJ, Casimero FVC, Siddiquee Z, Stone JR. Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccines. 2023;8(1):141. https://doi.org/10.1038/s41541-023-00742-7

95. Sano H, Kase M, Aoyama Y, Sano S. A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA vaccination is possibly associated with the intralesional spike protein expressed by vascular endothelial cells and eccrine glands in the deep dermis. J Dermatol. 2023;50(9):1208-12. https://doi.org/10.1111/1346-8138.16816

96. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, McGary H, Razmpour R, Galie PA, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. bioRxiv [Preprint]. 2020:2020.06.15.150912. https://doi.org/10.1101/2020.06.15.150912

97. Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells. 2023;12(5):688. https://doi.org/10.3390/cells12050688

98. Navarra A, Albani E, Castellano S, Arruzzolo L, Levi-Setti PE. Coronavirus Disease-19 Infection: Implications on Male Fertility and Reproduction. Front Physiol. 2020;11:574761. https://www.doi.org/10.3389/fphys.2020.574761

99. Edelman A, Boniface ER, Male V, Cameron ST, Benhar E, Han L, et al. Association between menstrual cycle length and Covid-19 vaccination: global, retrospective cohort study of prospectively collected data. BMJ Med. 2022;1(1):e000297. https://doi.org/10.1136/bmjmed-2022-000297

100. Lessans N, Rottenstreich A, Stern S, Gilan A, Saar TD, Porat S, et al. The effect of BNT162b2 SARS-CoV-2 mRNA vaccine on menstrual cycle symptoms in healthy women. Int J Gynaecol Obstet. 2023;160(1):313-8. https://doi.org/10.1002/ijgo.14356

101. Weickenmeier J, Jucker M, Goriely A, Kuhl E. A Physics-based Model Explains the Prion-like Features of Neurodegeneration in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. J of the Mechanics and Physics of Solids. 2019;124:264-81. https://doi.org/10.1016/j.jmps.2018.10.013

102. Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693-714. https://doi.org/10.1016/j.cell.2022.12.032

103. Kuvandık A, Özcan E, Karaduman S, Sungurtekin H. Creutzfeldt-Jakob Disease After the Coronavirus Disease-2019 Vaccination. Turk J Intensive Care. 2022;20:61-4. https://doi.org/10.4274/tybd.galenos.2021.91885

104. Na DL, Suh CK, Choi SH, Moon HS, Seo DW, Kim SE, et al. Diffusion-weighted magnetic resonance imaging in probable Creutzfeldt-Jakob disease: a clinical-anatomic correlation. Arch Neurol. 1999;56(8):951-7. https://doi.org/10.1001/archneur.56.8.951

105. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422-34. https://doi.org/10.1093/oxfordjournals.aje.a120955

106. Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, et al. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr Issues Mol Biol. 2022;44(3):1115-26. https://doi.org/10.3390/cimb44030073

107. Afshar MZ, Pirzaman TA, Liang JJ, Sharma A, Pirzadeh M, Babazadeh A, et al. Do we miss rare adverse events induced by COVID-19 vaccination? Front Med (Lausanne). 2022;9:933914. https://doi.org/10.3389/fmed.2022.933914

108. Goldman S, Bron D, Tousseyn T, Vierasu I, Dewispelaere L, Heimann P, et al. Rapid Progression of Angioimmunoblastic T Cell Lymphoma Following BNT162b2 mRNA Vaccine Booster Shot: A Case Report. Front Med (Lausanne). 2021;8:798095. https://pmc.ncbi.nlm.nih.gov/articles/PMC8846585/

109. Mizutani M, Mitsui H, Amano T, Ogawa Y, Deguchi N, Shimada S, et al. Two cases of axillary lymphadenopathy diagnosed as diffuse large B-cell lymphoma developed shortly after BNT162b2 COVID-19 vaccination. J Eur Acad Dermatol Venereol. 2022;36(8):e613-e615. https://doi.org/10.1111/jdv.18136

110. Cavanna L, Grassi SO, Ruffini L, Michieletti E, Carella E, Palli D, et al. Non-Hodgkin Lymphoma Developed Shortly after mRNA COVID-19 Vaccination: Report of a Case and Review of the Literature. Medicina (Kaunas). 2023;59(1):157. https://doi.org/10.3390/medicina59010157

111. Kyriakopoulos AM, Nigh G, McCullough PA, Olivier MD, Seneff S. Bell's palsy or an aggressive infiltrating basaloid carcinoma post-mRNA vaccination for COVID-19? A case report and review of the literature. EXCLI J. 2023;22:992-1011. https://dx.doi.org/10.17179/excli2023-6145

112. De la Torre-Gomar FJ, Llamas-Molina JM, Pegalajar-García MD, Pérez-Valencia C, Carrero-Castaño A, Ruiz-Villaverde R. Primary Cutaneous CD4 Small/Medium T-Cell Lymphoproliferative Disorder Following COVID-19 Vaccination-What Do We Know about Lymphoproliferative Disorders and Cutaneous Lymphomas after COVID-19 Vaccination? A Report of an Atypical Case and a Review of the Literature. Life (Basel). 2024;14(3):386. https://doi.org/10.3390/life14030386

113. Okoro EO, Ikoba NA, Okoro BE, Akpila AS, Salihu MO. Paradoxical increase in global COVID-19 deaths with vaccination coverage: World Health Organization estimates (2020–2023). International Journal of Risk & Safety in Medicine. 2025;0(0). https://doi.org/10.1177/09246479251336610

114. Marcello E, Chiono V. Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting. Int J Mol Sci. 2023;24(4):3390. https://doi.org/10.3390/ijms24043390

115. Zhou H, Ji J, Chen X, Bi Y, Li J, Wang Q, et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell. 2021;184(17):4380-91.e14. https://doi.org/10.1016/j.cell.2021.06.008

116. Alfonso P, Butković A, Fernández R, Riesgo A, Elena SF. Unveiling the hidden viromes across the animal tree of life: insights from a taxonomic classification pipeline applied to invertebrates of 31 metazoan phyla. mSystems. 2024;9(5):e0012424. https://doi.org/10.1128/msystems.00124-24


Рецензия

Для цитирования:


Супотницкий М.В. Нерешенные и замалчиваемые научные проблемы, оставленные пандемией COVID‐19. Вестник войск РХБ защиты. 2025;9(2):118-150. https://doi.org/10.35825/2587-5728-2025-9-2-118-150. EDN: ehcise

For citation:


Supotnitskiy M.V. Unresolved and Suppressed Scientific Issues Left by the COVID-19 Pandemic. Journal of NBC Protection Corps. 2025;9(2):118-150. (In Russ.) https://doi.org/10.35825/2587-5728-2025-9-2-118-150. EDN: ehcise

Просмотров: 15


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)