Детоксификация пептид-содержащих биотоксинов
https://doi.org/10.35825/2587-5728-2023-8-3-256-269
EDN: jokpyt
Аннотация
Основные моменты. Пептидные биотоксины представляют собой серьезную проблему для здоровья людей и как поражающие агенты из-за широкого разнообразия их структур и источников.
Пептидные биотоксины и прионные белки могут быть эффективно нейтрализованы различными методами, включая обработку протеазами.
Актуальность – биотоксины пептидной природы представляют серьезную угрозу для здоровья людей и как поражающие агенты. Если направлениям, касающимся иммунологических систем защиты от таких токсинов, посвящено большое количество аналитических обзоров, то вопросы ферментативной детоксификации биотоксинов в лучшем случае рассматриваются поверхностно.
Цель работы – провести анализ основных современных направлений разработки средств ферментативной детоксификации биотоксинов пептидной природы.
Источниковая база исследования – преимущественно англоязычная научная литература, доступная через глобальную сеть Интернет, а также собственные опубликованные экспериментальные исследования авторов.
Метод исследования – аналитический.
Результаты. В настоящее время эффективность детоксифицирующих иммунологических препаратов возросла благодаря высокопроизводительным методам скрининга и отбору эффективных клонов – продуцентов моноклональных антител. В статье особое внимание уделено применению для детоксификации пептидных биотоксинов гидролитических ферментов, рассматриваемых в данной работе как альтернатива иммунобиологическим препаратам. Природный аналог детоксифицирующих ферментов – система «токсин–антитоксин» прокариот. Известно не менее четырех типов ингибиторов биотоксинов: блокирующие их каталитическую активность; экранирующие их рецепторы-мишени; ингибирующие токсин путем воздействия на его структуру; аллостерически модулирующие активность биотоксина. Имеются обнадеживающие данные по использованию детоксифицирующих ферментов для нейтрализации прионов в почве и лечения прионных осложнений, вызванных «вакцинацией» нуклеиновыми кислотами.
Вывод. Использование ферментов-протеаз для детоксикации пептидных биотоксинов и прионных белков можно рассматривать как перспективную альтернативу детоксифицирующим иммунобиологическим препаратам.
Ключевые слова
Об авторах
И. В. ЛягинРоссия
Лягин Илья Владимирович. Старший научный сотрудник, канд. хим. наук, член коллектива, выполняющего исследование.
119991, г. Москва, Ленинские горы, д. 1, стр. 3;
119334, г.Москва, ул. Косыгина, д. 4.
О. В. Маслова
Россия
Маслова Ольга Васильевна. Старший научный сотрудник, канд. хим. наук, член коллектива, выполняющего исследование.
119991, г. Москва, Ленинские горы, д. 1, стр. 3.
О. В. Сенько
Россия
Сенько Ольга Витальевна. Научный сотрудник, канд. хим. наук, член коллектива, выполняющего исследование.
119991, г. Москва, Ленинские горы, д. 1, стр. 3;
119334, г.Москва, ул. Косыгина, д. 4.
Н. А. Степанов
Россия
Степанов Николай Алексеевич. Научный сотрудник, канд. тех. наук, член коллектива, выполняющего исследование.
119991, г. Москва, Ленинские горы, д. 1, стр. 3;
119334, г.Москва, ул. Косыгина, д. 4.
Е. Н. Ефременко
Россия
Ефременко Елена Николаевна. Зав. лабораторией, докт. биол. наук, профессор, руководитель коллектива, выполняющего исследование.
119991, г. Москва, Ленинские горы, д. 1, стр. 3;
119334, г.Москва, ул. Косыгина, д. 4
Список литературы
1. Clark GC, Casewell NR, Elliott CT, Harvey AL, Jamieson AG, Strong PN, et al. Friends or foes? Emerging impacts of biological toxins. Trends Biochem Sci. 2019;44(4):365–79. https://doi.org/10.1016/j.tibs.2018.12.004
2. Efremenko E, Aslanli A, Lyagin I. Advanced situation with recombinant toxins: Diversity, production and application purposes. Int J Mo. Sci. 2023;24(5):4630. https://doi.org/10.3390/ijms24054630
3. Супотницкий МВ. Биологические свойства бактериальных токсинов. Вестник войск РХБ защиты. 2024;8(1):34–64. EDN: jtrfxo https://doi.org/10.35825/2587-5728-2024-8-1-34-64 [Supotnitskiy MV. The Biological properties of bacterial toxins. Journal of NBC Protection Corps. 2024;8(1):34–64. EDN:jtrfxo https://doi.org/10.35825/2587-5728-2024-8-1-34-64]
4. Osipov A, Utkin Y. What are the neurotoxins in hemotoxic snake venoms? Int J Mol Sci. 2023;24(3):2919. https://doi.org/10.3390/ijms24032919
5. Page R, Peti W. Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12(4):208–14. https://doi.org/10.1038/nchembio.2044
6. Andryukov BG, Somova LM, Timchenko NF, Bynina MP, Lyapun IN. Toxin–antitoxin systems and their role in maintaining the pathogenic potential of causative agents of Sapronoses. Infect Disord Drug Targets. 2020;20(5):570–84. https://doi.org/10.2174/1871526519666190715150444
7. Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, et al. The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming. Toxins. 2021;13(7):451. https://doi.org/10.3390/toxins13070451
8. Wang X, Xia Z, Wang H, Wang D, Sun T, Hossain E, et al. Cell-membrane-coated nanoparticles for the fight against pathogenic bacteria, toxins, and inflammatory cytokines associated with sepsis. Theranostics. 2023;13(10):3224–44. https://doi.org/10.7150/thno.81520
9. Romero-Giraldo LE, Pulido S, Berrío MA, Flórez MF, Rey-Suárez P, Nuñez V, et al. Heterologous expression and immunogenic potential of the most abundant phospholipase a2 from coral snake Micrurus dumerilii to develop antivenoms. Toxins. 2022;14(12):825. https://doi.org/10.3390/toxins14120825
10. Ryabchevskaya EM, Granovskiy DL, Evtushenko EA, Ivanov PA, Kondakova OA, Nikitin NA, et al. Designing stable Bacillus anthracis antigens with a view to recombinant anthrax vaccine development. Pharmaceutics. 2022;14(4):806. https://doi.org/10.3390/pharmaceutics14040806
11. Granovskiy DL, Ryabchevskaya EM, Evtushenko EA, Kondakova OA, Arkhipenko MV, Kravchenko TB, et al. New formulation of a recombinant anthrax vaccine stabilised with structurally modified plant viruses. Front Microbiol. 2022;13:1003969. https://doi.org/10.3389/fmicb.2022.1003969
12. Karpov DS, Goncharenko AV, Usachev EV, Vasina DV, Divisenko EV, Chalenko YM, et al. A Strategy for the Rapid Development of a Safe Vibrio cholerae Candidate Vaccine Strain. Int J Mol Sci. 2021;22(21):11657. https://doi.org/10.3390/ijms222111657
13. Rudenko N, Nagel A, Zamyatina A, Karatovskaya A, Salyamov V, Andreeva-Kovalevskaya Z, et al. A monoclonal antibody against the C-terminal domain of Bacillus cereus hemolysin II inhibits HlyII cytolytic activity. Toxins. 2020;12(12):806. https://doi.org/10.3390/toxins12120806
14. Abramov VM, Kosarev IV, Motin VL, Khlebnikov VS, Vasilenko RN, Sakulin VK, et al. Binding of LcrV protein from Yersinia pestis to human T-cells induces apoptosis, which is completely blocked by specific antibodies. Int J Biol Macromol. 2019;122:1062–70. https://doi.org/10.1016/j.ijbiomac.2018.09.054
15. Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, et al. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins. 2019;11(8):464. https://doi.org/10.3390/toxins11080464
16. Yu X, Gao X, Zhu K, Yin H, Mao X, Wojdyla JA, et al. Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism. Commun Biol. 2020;3(1):216. https://doi.org/10.1038/s42003-020-0941-1
17. Yao J, Zhen X, Tang K, Liu T, Xu X, Chen Z, et al. Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system. Nucleic Acids Res. 2020;48(19):11054–67. https://doi.org/10.1093/nar/gkaa855
18. Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, et al. A new type V toxinantitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol. 2012;8(10):855–61. https://doi.org/10.1038/nchembio.1062
19. Marimon O, Teixeira JM, Cordeiro TN, Soo VW, Wood TL, Mayzel M, et al. An oxygen-sensitive toxinantitoxin system. Nat Commun. 2016;7:13634. https://doi.org/10.1038/ncomms13634
20. Jankevicius G, Ariza A, Ahel M, Ahel I. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell. 2016;64(6):1109–16. https://doi.org/10.1016/j.molcel.2016.11.014
21. Albulescu L-O, Xie C, Ainsworth S, Alsolaiss J, Crittenden E, Dawson CA, et al. A therapeutic combination of two small molecule toxin inhibitors provides broad preclinical efficacy against viper snakebite. Nat Commun. 2020;11(1):6094. https://doi.org/10.1038/s41467-020-19981-6
22. Guo Z, Yue N, Chen M, Li J, Lv R, Wang J, et al. Purinergic Receptor Antagonists Inhibit Hemolysis Induced by Clostridium perfringens Alpha Toxin. Pathogens. 2024;13(6):454. https://doi.org/10.3390/pathogens13060454
23. Yermak IM, Volod’ko AV, Khasina EI, Davydova VN, Chusovitin EA, Goroshko DL, et al. Inhibitory Effects of Carrageenans on Endotoxin-Induced Inflammation. Mar Drugs. 2020;18(5):248. https://doi.org/10.3390/md18050248
24. Patel KB, Kononova O, Cai S, Barsegov V, Parmar VS, Kumar R, et al. Botulinum neurotoxin inhibitor binding dynamics and kinetics relevant for drug design. Biochim Biophys Acta Gen Subj. 2021;1865(9):129933. https://doi.org/10.1016/j.bbagen.2021.129933
25. Yang Z, Wang C, Liu J, Xiao L, Guo L, Xie J. In Silico–Ex Vitro Iteration Strategy for Affinity Maturation of Anti-Ricin Peptides and the SPR Biosensing Application. Toxins. 2023;15(8):490. https://doi.org/10.3390/toxins15080490
26. Aziz UBA, Saoud A, Bermudez M, Mieth M, Atef A, Rudolf T, et al. Targeted small molecule inhibitors blocking the cytolytic effects of pneumolysin and homologous toxins. Nat Commun. 2024;15(1):3537. https://doi.org/10.1038/s41467-024-47741-3
27. Lin L, Olson ME, Sugane T, Turner LD, Tararina MA, Nielsen AL, et al. Catch and Anchor Approach To Combat Both Toxicity and Longevity of Botulinum Toxin A. J Med Chem. 2020;63(19):11100–20. https://doi.org/10.1021/acs.jmedchem.0c01006
28. Desai N, Pande S, Salave S, Singh TRR, Vora LK. Antitoxin nanoparticles: design considerations, functional mechanisms, and applications in toxin neutralization. Drug Discov Today. 2024;29(8):104060. https://doi.org/10.1016/j.drudis.2024.104060
29. Ефременко ЕН, Лягин ИВ, Маслова ОВ, Сенько ОВ, Степанов НА, Асланлы АГ. Каталитическое разложение микропластиков. Успехи химии. 2023;92(2):RCR5069. https://doi.org/10.57634/RCR5069 [Efremenko EN, Lyagin IV, Maslova OV, Senko OV, Stepanov NA, Aslanli AG. Catalytic degradation of microplastics. Russ Chem Rev. 2023;92(2):RCR5069. https://doi.org/10.57634/RCR5069]
30. Маслова ОВ, Сенько ОВ, Степанов НА, Лягин ИВ, Ефременко ЕН. Биокатализ в деградации синтетических полимеров. Вестник Московского университета. Серия 2: Химия. 2024;65(2):161–8. https://doi.org/10.55959/MSU0579-9384-2-2024-65-2-161-168 [Maslova OV, Senko OV, Stepanov NA, Lyagin IV, Efremenko EN. Biocatalysis in the Degradation of Synthetic Polymers. Moscow Univ Chem Bull. 2024;79(2):140–5. https://doi.org/10.3103/S0027131424700019]
31. Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. Environ. Sci Technol. 2024;58(6):2598–2614. https://doi.org/10.1021/acs.est.3c09239
32. Wei L, Li J, Wang Z, Wu J, Wang S, Cai Z, et al. Evaluating effects of tetrabromobisphenol A and microplastics on anaerobic granular sludge: Physicochemical properties, microbial metabolism, and underlying mechanisms. J Environ Manage. 2024;359:121077. https://doi.org/10.1016/j.jenvman.2024.121077
33. Samel M, Vija H, Kurvet I, Künnis-Beres K, Trummal K, Subbi J, et al. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins. 2013;5(2):203–23. https://doi.org/10.3390/toxins5020203
34. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, et al. Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis. 2005;11(10):1578–83. https://doi.org/10.3201/eid1110.041279
35. Kalb SR, Baudys J, Wang D, Barr JR. Recommended mass spectrometry-based strategies to identify botulinum neurotoxin-containing samples. Toxins. 2015;7(5):1765–78. https://doi.org/10.3390/toxins7051765
36. Dupré M, Gilquin B, Fenaille F, Feraudet-Tarisse C, Dano J, Ferro M, et al. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal Chem. 2015;87(16):8473–80. https://doi.org/10.1021/acs.analchem.5b01900
37. Alam SI, Kumar B, Kamboj DV. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol. Anal Chem. 2012;84(23):10500–07. https://doi.org/10.1021/ac3028678
38. Mirgorodskaya OA, Kazanina GA, Mirgorodskaya EP, Vorotyntseva TI, Zamolodchikova TS, Alexandrov SL. A Comparative study of the specificity of melittin hydrolysis by duodenase, trypsin and plasmin. Prot Pept Lett. 1996;3(5):315–20.
39. Sokolova EA, Mirgorodskaya OA, Roepstorff P, Savelyeva NV, Zamolodchikova TS. Comparative study of the action of bovine duodenal proteinases (duodenases) on polypeptide substrates. Biochemistry (Mosc). 2001;66(1):62–7. https://doi.org/10.1023/a:1002833729744
40. Mirgorodskaya O, Kazanina G, Mirgorodskaya E, Matveyev V, Thiede B, Khaitlina S. Proteolytic cleavage of melittin with the actin-digesting protease. Prot Pept Lett. 1996;3(2):81–8.
41. El-Didamony SE, Kalaba MH, Sharaf MH, El-Fakharany EM, Osman A, Sitohy M, et al. Melittin alcalasehydrolysate: a novel chemically characterized multifunctional bioagent; antibacterial, anti-biofilm and anticancer. Front Microbiol. 2024;15:e1419917. https://doi.org/10.3389/fmicb.2024.1419917
42. Lee H-S, Kim YS, Lee K-S, Seo H-S, Lee C-Y, Kim KK. Detoxification of Bee Venom Increases Its Anti-inflammatory Activity and Decreases Its Cytotoxicity and Allergenic Activity. Appl Biochem Biotechnol. 2021;193(12):4068–82. https://doi.org/10.1007/s12010-021-03653-2
43. Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible “benefit” of allergy. Allergo J Int. 2020;29(2):46–62. https://doi.org/10.1007/s40629-020-00118-6
44. Hellman L, Akula S, Fu Z, Wernersson S. Mast Cell and Basophil Granule Proteases - In Vivo Targets and Function. Front Immunol. 2022;13:918305 https://doi.org/10.3389/fimmu.2022.918305
45. Anderson E, Stavenhagen K, Kolarich D, Sommerhoff CP, Maurer M, Metz M. Human Mast Cell Tryptase Is a Potential Treatment for Snakebite Envenoming Across Multiple Snake Species. Front Immunol. 2018;9:1532. https://doi.org/10.3389/fimmu.2018.01532
46. Xu Q, Ma H, Zhang H, Fan J, Yin C, Liu X, et al. Purification and activity of the first recombinant enzyme for biodegrading hepatotoxin by Sphingopyxis sp. USTB-05. Algal Res. 2020;47:101863. https://doi.org/10.1016/j.algal.2020.101863
47. Zou Q, Teng J, Wang K, Huang Y, Hu Q, Chen S, et al. Purification and mechanism of microcystinase MlrC for catalyzing linearized cyanobacterial hepatotoxins using Sphingopyxis sp. USTB-05. Toxins. 2022;14(9):602. https://doi.org/10.3390/toxins14090602
48. Teng J, Song M, Xu Q, Zou Q, Zhang H, Yin C, et al. Purification and activity of the second recombinant enzyme for biodegrading linearized microcystins by Sphingopyxis sp. USTB-05. Toxins. 2023;15(8):494. https://doi.org/10.3390/toxins15080494
49. Wu X, Wu H, Gu X, Zhang R, Sheng Q, Ye J. Effect of the immobilized microcystin-LR-degrading enzyme MlrA on nodularin degradation and its immunotoxicity study. Environ Pollut. 2020;258:113653. https://doi.org/10.1016/j.envpol.2019.113653
50. Johnson CJ, Bennett JP, Biro SM, Duque-Velasquez JC, Rodriguez CM, Bessen RA, et al. Degradation of the disease-associated prion protein by a serine protease from lichens. PLoS One. 2011;6(5):19836. https://doi.org/10.1371/journal.pone.0019836
51. Saunders SE, Bartz JC, Vercauteren KC, Bartelt-Hunt SL. Enzymatic digestion of chronic wasting disease prions bound to soil. Environ Sci Technol. 2010;44(11):4129–35. https://doi.org/10.1021/es903520d
52. Langeveld JPM, Wang J-J, Van de Wiel DFM, Shih GC, Garssen GJ, Bossers A, et al. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis. 2003;188(11):1782–9. https://doi.org/10.1086/379664
53. Pilon JL, Nash PB, Arver T, Hoglund D, VerCauteren KC. Feasibility of infectious prion digestion using mild conditions and commercial subtilisin. J Virol Methods. 2009;161(1):168–72. https://doi.org/10.1016/j.jviromet.2009.04.040
54. Hsu RL, Lee KT, Wang JH, Lee LY, Chen RP. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J Agric Food Chem. 2009;57(2):503–8. https://doi.org/10.1021/jf803072r
55. Lampe BJ, English JC. Toxicological assessment of nattokinase derived from Bacillus subtilis var. natto. Food Chem Toxicol. 2016;88:87–99. https://doi.org/10.1016/j.fct.2015.12.025
56. Naik S, Katariya R, Shelke S, Patravale V, Umekar M, Kotagale N, et al. Nattokinase prevents β-amyloid peptide (Aβ1-42) induced neuropsychiatric complications, neuroinflammation and BDNF signalling disruption in mice. Eur J Pharmacol. 2023;952:175821. https://doi.org/10.1016/j.ejphar.2023.175821
57. Chen H, McGowan EM, Ren N, Lal S, Nassif N, Shad-Kaneez F, et al. Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases. Biomark. Insights. 2018;13:1177271918785130. https://doi.org/10.1177/1177271918785130
58. Hulscher N, Procter BC, Wynn C, McCullough PA. Clinical Approach to Post-acute Sequelae After COVID19 Infection and Vaccination. Cureus. 2023;15(11):e49204. https://doi.org/10.7759/cureus.49204
59. Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. ‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11:2287. https://doi.org/10.3390/biomedicines11082287
60. Jack K, Jackson GS, Bieschke J. Essential components of synthetic infectious prion formation de novo. Biomolecules. 2022;12(11):1694. https://doi.org/10.3390/biom12111694
61. You Y, Suraj HM, Matz L, Valderrama ALH, Ruigrok P, Shi-Kunne X, et al. Botrytis cinerea combines four molecular strategies to tolerate membrane-permeating plant compounds and to increase virulence. Nat Commun. 2024;15(1):6448. https://doi.org/10.1038/s41467-024-50748-5
62. Efremenko E, Lyagin I, Stepanov N, Senko O, Maslova O, Aslanli A, et al. Luminescent Bacteria as Bioindicators in Screening and Selection of Enzymes Detoxifying Various Mycotoxins. Sensors. 2024;24(3):763. https://doi.org/10.3390/s24030763
63. Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, et al. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci. 2024;331:103205. https://doi.org/10.1016/j.cis.2024.103205
Рецензия
Для цитирования:
Лягин И.В., Маслова О.В., Сенько О.В., Степанов Н.А., Ефременко Е.Н. Детоксификация пептид-содержащих биотоксинов. Вестник войск РХБ защиты. 2024;8(3):256-269. https://doi.org/10.35825/2587-5728-2023-8-3-256-269. EDN: jokpyt
For citation:
Lyagin I.V., Maslova O.V., Senko O.V., Stepanov N.A., Efremenko E.N. Detoxification of Peptide-Containing Biotoxins. Journal of NBC Protection Corps. 2024;8(3):256-269. (In Russ.) https://doi.org/10.35825/2587-5728-2023-8-3-256-269. EDN: jokpyt