Preview

Journal of NBC Protection Corps

Advanced search

Rabbitpox

https://doi.org/10.35825/2587-5728-2023-8-3-232-242

EDN: toebmp

Abstract

There is a danger that a natural smallpox virus may be reintroduced from the unknown spring or that a similar virus with the same pathogenic properties may appear or that somebody may create a synthetic copy of such a virus. That is why it is crucial to have a proper laboratory pattern that may imitate a natural smallpox disease and other human orthopoxviruses. A rabbitpox virus may provoke a grave and highly contagious disease in rabbits with a high death rate. The symptoms of this disease in rabbits is similar to symptoms of natural smallpox in humans. There have been no cases of rabbitpox in humans.

Purpose of the study – To summarize data on research of a rabbitpox virus and to analyze the symptoms of this disease in rabbits that is similar to a natural pox virus in humans. This analysis may contribute to the development of new drugs against smallpox.

Study base sources – English scientific papers available on the Internet.

Method of the study – Analytical.

Results and discussion. Rabbitpox was first detected in 1930 in lab. rabbits in Utrecht, the Netherlands, then in the USA, at Rockfeller University in New York. From 1941 the outbreaks of rabbitpox were registered in research institutes in Europe and in the USA. However, there were no cases of this disease in rabbits in the wildlife.  The analysis has demonstrated that  the pattern “a rabbit–a rabbitpox virus” has been quite successful in pre-clinical studies of protective efficiency of orthopoxvirus vaccines, monoclonal antibodies, mRNA-based drugs and chemotherapeutic agents (thiosemicarbazone, Cidofovir, tecovirimat, Brincidofovir, etc.) for different transmission modes including inhalative one. This pattern is also useful for evaluation of diagnostic sets, employed for orthopoxviruses detection.

Conclusion. Pattern “a rabbit–a rabbitpox virus” is safe for humans and is promising for simulation of different pathological states when we conduct various medical and biological studies of orthopoxvirus infections. It also may be used to evaluate the efficiency of immunobiological drugs against smallpox, chemotherapeutic agents and diagnostic sets.

About the Authors

Lyudmila F. Stovba
48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
Russian Federation

Lyudmila F. Stovba. Senior Researcher of the Department. Cand. Sci. (Biol.).

11, Octyabrskaya St., Moscow region, Sergiev Posad-6, 141306.



Aleksandr A. Petrov
48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
Russian Federation

Aleksandr A. Petrov. Chief of the Directorate. Dr. Sci. (Med.).

11, Octyabrskaya St., Moscow region, Sergiev Posad-6, 141306.



Dеnis P. Belozerov
48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
Russian Federation

Dеnis P. Belozerov. Senior Researcher.

11, Octyabrskaya St., Moscow region, Sergiev Posad-6, 141306.



Oleg V. Chukhralia
48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
Russian Federation

Oleg V. Chukhralia. Chief of the Department.

11, Octyabrskaya St., Moscow region, Sergiev Posad-6, 141306.



Sergey A. Melnikov
48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
Russian Federation

Sergey A. Melnikov. Senior Researcher of the Department. Cand. Sci. (Biol.).

11, Octyabrskaya St., Moscow region, Sergiev Posad-6, 141306.



Sergey V. Borisevich
48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
Russian Federation

Sergey V. Borisevich. Chief of the Institute. Dr. Sci. (Biol.), Professor, Academician of RAS.

11, Octyabrskaya St., Moscow region, Sergiev Posad-6, 141306.



References

1. Greene HSN. A pandemic of rabbitpox. Proc Soc Exp Biol Med. 1933;30:892-94. https://doi.org/10.3181/00379727-30-6724

2. Fenner F. Rabbitpox virus. In: Osterhaus AD, ed. Virus infections of rodents and lagomorphs, New York: Elsevier; 1994. P. 51–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117393/

3. Garza NL, Hatkin JM, Livingston V, Nichols DK, Chaplin PJ, Volkmann A, et al. Evaluation of the efficacy of modified vaccinia Ankara (MVA)/IMVAMUNE against aerosolized rabbitpox virus in a rabbit model. Vaccine. 2009;27(40):5496-504. https://doi.org/10.1016/j.vaccine.2009.06.105

4. Silva NIO, de Oliveira JS, Kroon EG, Trindade GS, Drumond BP. Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses. 2021;13(1):43. https://doi.org/10.3390/v13010043

5. Westwood JC, Boulter EA, Bowen ET, Maber HB. Experimental respiratory infection with poxviruses. I. Clinical virological and epidemiological studies. Br J Exp Pathol. 1966;47(5):453–65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2093726/

6. Adams MM, Rice AD, Moyer RW. Rabbitpox Virus and Vaccinia Virus Infection of Rabbits as a Model for Human Smallpox. J Virol. 2007;81(20):11084–95. https://doi.org/10.1128/JVI.00423-07

7. Henderson DA. Countering the Posteradication Threat of Smallpox and Polio. Clin Infect Dis. 2002;34:79–83. https://doi.org/10.1086/323897

8. Mucker EM, Golden JW, Hammerbeck CD, Kishimori JM, Royals M, Joselyn MD, et al. A Nucleic AcidBased Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. J Virol. 2022;96(3):01504–21. https://doi.org/10.1128/JVI.01504-21

9. Koblentz GD. The de novo synthesis of horsepox virus: implication for biosecurity and recommendations for preventing the reemergence of smallpox. Health Secur. 2017;15:620–8. https://doi.org/10.1089/hs.2-17.0061

10. Noyce RS, Lederman S, Evans DH. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 2018;13:e188453. https://doi.org/10.1371/journal.pone.0188453

11. Rice AD, Adams MM, Lampert B, Foster S, Lanier R, Robertson A, et al. Efficacy of CMX001 as a Prophylactic Antiviral Agent in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans. Viruses. 2011;3:63–82. https://doi.org/10.3390/v3020063

12. Smee DF, Sidwell RW. A review of compounds exhibiting anti-orthopoxvirus activity in animal models. Antiviral Research. 2003;57:41–52. https://doi.org/10.1016/S0166-3542(02)00199-7

13. Denzler KL, Rice AD, Mac Neill AL, Fukushima N, Lindsey SF, Wallace G, et al. The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3l, protects rabbits against lethal challenge by rabbitpox virus. Vaccine. 2011;29(44):659–69. https://doi.org/10.1016/j.vaccine.2011.07.140

14. Roy CJ, Voss TG. Use of the aerosol rabbitpox virus model for evaluation of anti-poxvirus agents. Viruses. 2010;2:2096–107. https://doi.org/10.3390/v2092096

15. Nalca A, Nichols DK. Rabbitpox: a model of airborne transmission of smallpox. J Gen Virol. 2011;92(1):31–5. https://doi.org/10.1099/vir.0.026237-0

16. Онищенко ГГ, Кириллов ИА, Борисевич СВ, Сизикова ТЕ, Кротков ВТ. Анализ аэробиологических исследований с ортопоксвирусами, проводимых Министерством обороны США. Журнал микробиологии, эпидемиологии и иммунобиологии. 2024;101(3):399–411. https://doi.org/10.36233/0372-9311-522 [Onishchenko GG, Kirillov IA, Borisevich SV, Sizikova TE, Krotkov VT. Analysis of aerobiological studies with orthopoxviruses by U.S. Department of Defense. Journal of microbiology, epidemiology and immunobiology. 2024;101(3):399–411 (in Russian).] https://doi.org/10.36233/0372-9311-522

17. Nalka A, Nichols DK. Rabbitpox: a model of airborne transmission of smallpox. J Gen Virol. 2011;92:31–5. https://doi.org/10.1099/vir.0.026237-0

18. Li G, Chen N, Rooper RL, Feng Z, Hunter A, Danila M, et al. Complete coding sequence of the rabbitpox virus genome. J Gen Virol. 2005;86:2969–77. https://doi.org/10.1099/vir.0.81331-0

19. Pratt CV, Church FC. General features of the heparin-binding serpins antithrombin, heparin cofactor II and protein C inhibitor. Blood Coagul Fibrinolisis. 1993;4:479–90. https://doi.org/10.1097/00001721-199306000-00013

20. Lu Y, Zhao Y, Gao C. Suresh S, Men J, Sawyers A, Smith GL. HDAC5 enhances IRF3 activation and is targeted for degradation by protein C6 from orthopoxviruses including Monkeypox Variola virus. Cell Reports. 2024;43(3):113788. https://doi.org/10.1016/j.celrep.2024.113788

21. Moyer RW, Rothe CF. The white pock mutants of rabbit poxvirus. I Spontaneous host rage mutants contain deletions. Virology. 1980;102(1):119–32. https://doi.org/10.1016/0042-6822(80)90075-6

22. Moyer RW, Brown GD, Graves RL. The white pock mutants of rabbit poxvirus. II The early white pock (M) host range (hr) mutants of rabbit poxvirus uncouple transcription and translation in nonpermissive cells. Virology. 1980;106(2):234–49. https://doi.org/10.1016/0042-6822(80)90247-0

23. Martinez-Pomares L, Stern RJ, Moyer RW. The ps/hr Gene (B5R Open Reading Frame Homolog) of Rabbitpox Virus Controls Pock Color, Is a Component of Exstracellular Enveloped Virus, and Is Secreted into the Medium. J Virol. 1993;67(9):5450–62. https://doi.org/10.1128/jvi.67.9.5450-5462.1993

24. Volz A, Sutter G. Modified Vaccinia virus Ankara History, value in basic research, and current perspectives for vaccine development. Adv Virus Res. 2017;97:187–243. https://doi.org/10.1016/bs.aivir.2016.07.001

25. Jones DI, McGee CE, Sample CJ, Sempowski GD, Pickup DJ, Staats HF. Modified Vaccinia Ankara Virus Vaccination Long-Term Protection against Nasal Rabbitpox Virus Challenge. Clinical and Vaccine Immunology. 2016;23(7):322–34. https://doi.org/10.1128/CVI.00216-16

26. Rizk JG, Lippi G, Henry BM, Dorthal DN, Rizk Y. Preventiol and Treatment of Monkeypox. Drags. 2022;82:957–63. https://doi.org/10.1007/s40265-022-01742-y

27. Hraib M, Jouni S, Albitar M, Alaidi S, Alshehabi Z. The outbreak of monkeypox 2022: An overview. Ann Med Surg (Lond). 2022;79:104069. https://doi.org/10.1016/j.amsu.2022.104069

28. Crickard L, Babas T, Seth S, Silvera P, Koriazova L, Crotty S. Protection of Rabbits and Immunodeficient Mice against Lethal Poxvirus Infection by Human Monoclonal Antibodies. Plos One. 2012;7(11):e48706. https://doi.org/10.1371/journal.pone.0048706

29. Ушкаленко НД, Ерш АВ, Филатов ПВ, Полтавченко АГ. Ускоренный метод иммуноферментного анализа для выявления ортопоксвирусов. Вопр. вирусол. 2023;68(3):242–51. https://doi.org/10.36233/0507-4088-178 [Ushkalenko N, Ersh A, Filatov P, Poltavchenko A. Accelerate method immunoferment analysis for detection. Orthopoxviruses. Problems of Virology (Voprosy Virusologii). 2023;68(3):242–51 (in Russian).] https://doi.org/10.36233/0507-4088-178

30. Ushkalenko N, Ersh A, Sergeev A, Filatov P, Poltavchenko A. Evaluation of Rapid Dot-Immunoassay for Detection Orthopoxviruses Using Laboratory-Grown Viruses and Animal's Clinical Specimens. Viruses. 2022;14(11):2580. https://doi.org/10.3390/v14112580

31. Quenelle DC, Keith KA, Kern ER. In vitro and in vivo evaluation of isatin-beta-thiosemicarbazone and marboran against vaccinia and cowpox virus infections. Antivir Res. 2006;71:24–30. https://doi.org/10.1016/j.antiviral.2006.02.010

32. Grosenbach DW, Honeychurch K, Rose EA, Chinsangaram J, Frimm A, Maiti B, et al. Oral Tecovirimat for the Treatment of Smallpox. N Engl J Med. 2018;379(1):44–53. https://doi.org/10.1056/NEJMoa1705688

33. Rice A, Adams M, Wallace G, Burrage AM, Lindsey SF, Smith AJ, et al. Efficacy of CMX001 as a Post Exposure Antiviral in New Zealand White Rabbits Infected with Rabbitpox Virus, a Model for Orthopoxvirus Infections of Humans. Viruses. 2011;3:47–62. https://doi.org/10.3390/v3010047

34. Trost LC, Rose ML, Khouri J, Keilholz L, Long J, Godin SJ, Foster S. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: A model of smallpox disease. Antivir Res. 2015;117:115–21. https://doi.org/10.1016/j.antiviral.2015.02.007

35. Verreault D, Sivasubramani SK, Talton JD, Doyle LA, Reddy JD, Killeen SZ, et al. Evaluation of inhaled Cidofovir as Postexposure Prophylactic in an Aerosol Rabbitpox Model. Antivir Res. 2012;93(1):204–8. https://doi.org/10.1016/j.antiviral.2011.11.013

36. Nalca A, Hatkin JM, Garza NL, Nichols DK, Norris SW, Hruby DE, Jordan R. Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model. Antivir Res. 2008;79:121–7. https://10.1016/j.antiviral.2008.03.005


Review

For citations:


Stovba L.F., Petrov A.A., Belozerov D.P., Chukhralia O.V., Melnikov S.A., Borisevich S.V. Rabbitpox. Journal of NBC Protection Corps. 2024;8(3):232-242. (In Russ.) https://doi.org/10.35825/2587-5728-2023-8-3-232-242. EDN: toebmp

Views: 217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)