Опасность мРНК-технологий
https://doi.org/10.35825/2587-5728-2024-8-3-205-231
EDN: ifdujf
Аннотация
Основные моменты. Опасность технологий воздействия на геном человека недооценивается, одну из таких опасностей представляют мРНК-технологии.
Актуальность. Широкое распространения мРНК-технологий на Западе и постепенное их проникновение в Россию ставит вопрос о безопасности их применения.
Цель исследования – выявление потенциальной опасности мРНК-технологий.
Источниковая база исследования – полнотекстовые англоязычные научные журналы, доступные через сеть Интернет.
Метод исследования. Аналитический. Использовались рекомендации Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
Обсуждение. В работе рассмотрены суть и границы мРНК-технологий; показано, как они работают; установлены их недостатки, способные привести к патологическим последствиям у людей; выявлены подходы к их применению для управления генами человека. Показано, что имеющиеся к настоящему времени мРНК-технологии несовершенны, прогнозировать ближайшие и отдаленные последствия их воздействия на здоровье человека при современном уровне знаний невозможно. Сама технология имеет двойное назначение и может быть использована под другими названиями для ведения биологической войны, имеющей ранее не ставившуюся цель – депопуляция населения. С каждым поколением средств, воздействующих на геном человека, они будут становиться опаснее, методы применения более изощренными, сопровождаться информационной составляющей, не допускающей альтернативных мнений, и снижением общего уровня знаний о биологических угрозах.
Выводы. Необходимо наладить жесткий государственный контроль над разработкой любых технологий воздействия на геном человека, не допуская их применение под другими названиями. Для выявления спектра неблагоприятных последствий применения мРНК-технологий целесообразно ограничить ее применение только в онкологии ориентировочно на десять лет. Все инъекционные препараты, поступающие в Россию из-за рубежа, должны контролироваться на наличие «закладок» нанообъектов.
Ключевые слова
Об авторе
М. В. СупотницкийРоссия
Супотницкий Михаил Васильевич. Главный специалист, канд. биол. наук, ст. науч. сотр.
111024, Москва, проезд Энтузиастов, д. 19.
Список литературы
1. Ainscough M. Next Generation Bioweapons: The Technology of Genetic Engineering Applied to Biowarfare and Bioterrorism, Future Warfare Series 14. Maxwell Air Force Base, AL: Air University, 2002.
2. Black JL 3rd. Genome projects and gene therapy: gateways to next generation biological weapons. Mil Med. 2003;168(11):864–71. PMID: 14680038.
3. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58. https://doi.org/10.1016/j.ymgme.2003.08.016
4. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med. 2002;346(16):1185–93. https://doi.org/10.1056/nejmoa012616
5. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9. https://doi.org/10.1126/science.1088547
6. Gisselsson D. Next-Generation Biowarfare: Small in Scale, Sensational in Nature? Health Secur. 2022;20(2):182–6. https://doi.org/10.1089/hs.2021.0165
7. Dominik J. Future Bioterror and Biowarfare Threats for NATO's Armed Forces until 2030. J Advanced Military Studies. 2023;14(1):118–43. https://muse.jhu.edu/view_citations?type=article&id=901770 (дата обращения: 12.01.2024).
8. Beissert T, Perkovic M, Vogel A, Erbar S, Walzer KC, Hempel T, et al. A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Mol Ther. 2020;28(1):119–28. https://doi.org/10.1016/j.ymthe.2019.09.009
9. Yang L, Gong L, Wang P, Zhao X, Zhao F, Zhang Z, Li Y, Huang W. Recent Advances in Lipid Nanoparticles for Delivery of mRNA. Pharmaceutics. 2022;14(12):2682. https://doi.org/10.3390/pharmaceutics14122682
10. Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: A review. J Biol Chem. 2021;296:100416. https://doi.org/10.1016/j.jbc.2021.100416
11. Chen F, Liu Q, Xiong Y, Xu L. Nucleic acid strategies for infectious disease treatments: The nanoparticlebased oral delivery route. Front Pharmacol. 2022;13:984981. https://doi.org/10.3389/fphar.2022.984981
12. Загоскин АА, Захарова МВ, Нагорных МО. Структурные элементы векторов на основе ДНК и РНК для доставки геномных редакторов в клетки высших эукариот in vitro и in vivo. Молекулярная биология. 2022;56(6):1023–38. https://doi.org/10.31857/S002689842206026XZagoskin АА, Zakharova МV, Nagornykh МО. Structural elements of DNA and RNA eukaryotic expression vectors for in vitro and in vivo genome editors delivery. Mol Biol. 2022;56(6):1023–38. https://doi.org/10.31857/S002689842206026X
13. Tusup M, French LE, De Matos M, Gatfield D, Kundig T, Pascolo S. Design of in vitro Transcribed mRNA Vectors for Research and Therapy. Chimia (Aarau). 2019;73(5):391–4. https://doi.org/10.2533/chimia.2019.391
14. Pordanjani SR, Pordanjani AR, Askarpour H, Arjmand M, Babakhanian M, Amiri M, et al. A Comprehensive Review on Various Aspects of SARS-CoV-2 (COVID-19) Vaccines. Int J Prev Med. 2022;13:151. https://doi.org/10.4103/ijpvm.ijpvm_513_21
15. Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A Comprehensive Review of mRNA Vaccines. Int J Mol Sci. 2023;24(3):2700. https://doi.org/10.3390/ijms24032700
16. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol. 2018;9:2379. https://doi.org/10.3389/fimmu.2018.02379
17. Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884– 92. https://doi.org/10.1093/nar/gkq347
18. Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T. N(1)-methylpseudouridineincorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release. 2015;217:337–44. https://doi.org/10.1016/j.jconrel.2015.08.051
19. Rubio-Casillas A, Cowley D, Raszek M, Uversky VN, Redwan EM. Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? Int J Biol Macromol. 2024;267(Pt 1):131427. https://doi.org/10.1016/j.ijbiomac.2024.131427
20. Nelson J, Sorensen EW, Mintri S, Rabideau AE, Zheng W, Besin G, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6(26):eaaz6893. https://doi.org/10.1126/sciadv.aaz6893
21. Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci. 2021;17(6):1446–60. https://doi.org/10.7150/ijbs.59233
22. Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses. 2022;14(2):401. https://doi.org/10.3390/v14020401
23. Demongeot J, Fougère C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines (Basel). 2022;11(1):40. https://doi.org/10.3390/vaccines11010040
24. Karam M, Daoud G. mRNA vaccines: Past, present, future. Asian J Pharm Sci. 2022;17(4):491–522. https://doi.org/10.1016/j.ajps.2022.05.003
25. Akahata W, Sekida T, Nogimori T, Ode H, Tamura T, Kono K, et al. Safety and immunogenicity of SARSCoV-2 self-amplifying RNA vaccine expressing an anchored RBD: A randomized, observer-blind phase 1 study. Cell Rep Med. 2023;4(8):101134. https://doi.org/10.1016/j.xcrm.2023.101134
26. Fath T, Bachtiar EW, Alitongbieke G, Pan Y, Hu Y, Widowati R. Immunoinformatic of novel self-amplifying mRNA vaccine lipid nanoparticle against SARS-CoV-2. J Adv Pharm Technol Res. 2024;15(2):91–8. https://doi.org/10.4103/JAPTR.JAPTR_424_23
27. Hick TAH, Geertsema C, Nijland R, Pijlman GP. Packaging of alphavirus-based self-amplifying mRNA yields replication-competent virus through a mechanism of aberrant homologous RNA recombination. mBio. 2024:e0249424. https://doi.org/0.1128/mbio.02494-24
28. Oba M. Study on development of polymeric micellar gene carrier and evaluation of its functionality. Biol Pharm Bull. 2013;36(7):1045–51. https://doi.org/10.1248/bpb.b13-00287
29. Iqbal S, Blenner M, Alexander-Bryant A, Larsen J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules. 2020;21(4):1327–50. https://doi.org/10.1021/acs.biomac.9b01754
30. Patel AK, Kaczmarek JC, Bose S, Kauffman KJ, Mir F, Heartlein MW, et al. Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv Mater. 2019;31(8):e1805116. https://doi.org/10.1002/adma.201805116
31. Cai X, Dou R, Guo C, Tang J, Li X, Chen J, et al. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics. 2023;15(5):1502.https://doi.org/10.3390/pharmaceutics15051502
32. Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics. 2022;14(6):1283. https://doi.org/10.3390/pharmaceutics14061283
33. Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles–From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano. 2021;15(11):16982–17015. https://doi.org/10.1021/acsnano.1c04996
34. Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol. 2024;12:1349077. https://doi.org/10.3389/fbioe.2024.1349077
35. Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol. 2024;12:1349077. https://doi.org/10.3389/fbioe.2024.1349077
36. Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009;11(4):671–81. https://doi.org/10.1208/s12248-009-9143-y
37. Harvie P, Wong FM, Bally MB. Use of poly(ethylene glycol)-lipid conjugates to regulate the surface attributes and transfection activity of lipid-DNA particles. J Pharm Sci. 2000;89(5):652–63. https://doi.org/10.1002/(SICI)1520-6017(200005)89:5<652::AID-JPS11>3.0.CO;2-H
38. Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov. 2002;1(2):131–9. https://doi.org/10.1038/nrd725
39. Zhang Y, Schlachetzki F, Zhang YF, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther. 2004;15(4):339–50. https://doi.org/10.1089/10430340360464660
40. Bitounis D, Jacquinet E, Rogers MA, Amiji MM. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov. 2024;23(4):281–300. https://doi.org/10.1038/s41573-023-00859-3
41. Cullis PR, Hope MJ. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol Ther. 2017 5;25(7):1467–75. https://doi.org/10.1016/j.ymthe.2017.03.013
42. Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, et al. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol. 2022;13:829796. https://doi.org/10.3389/fphar.2022.829796
43. Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet. 2021;41:100424. https://doi.org/10.1016/j.dmpk.2021.100424
44. Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022;28(7):542–54. https://doi.org/10.1016/j.molmed.2022.04.007
45. Brogna C, Cristoni S, Marino G, Montano L, Viduto V, Fabrowski M, et al. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics Clin Appl. 2023;17(6):e2300048. https://doi.org/10.1002/prca.202300048
46. Banoun H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int J Mol Sci. 2023;24(13):10514. https://doi.org/10.3390/ijms241310514
47. Mead MN, Seneff S, Wolfinger R, Rose J, Denhaerynck K, Kirsch S, et al. COVID-19 mRNA Vaccines: Lessons Learned from the Registrational Trials and Global Vaccination Campaign. Cureus. 2024;16(1):e52876. https://doi.org/10.7759/cureus.52876
48. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162–9. https://doi.org/10.1016/j.gene.2013.03.137
49. Hanna N, Heffes-Doon A, Lin X, Manzano De Mejia C, Botros B, Gurzenda E, etal. Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk. JAMA Pediatr. 2022;176(12):1268–70. https://doi.org/10.1001/jamapediatrics.2022.3581
50. Gote V, Bolla PK, Kommineni N, et al. Comprehensive Review of mRNA Vaccines. Int J Mol Sci. 2023;24(3):2700. https://doi.org/10.3390/ijms24032700
51. Kis Z, Kontoravdi C, Dey AK, Shattock R, Shah N. Rapid development and deployment of high-volume vaccines for pandemic response. J Adv Manuf Process. 2020;2(3):e10060. https://doi.org/10.1002%2Famp2.10060
52. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA. 2005;102(32):11539–44. https://doi.org/10.1073/pnas.0504926102
53. Cheang TY, Tang B, Xu AW, Chang GQ, Hu ZJ, He WL. Promising plasmid DNA vector based on APTESmodified silica nanoparticles. Int J Nanomedicine. 2012;7:1061–7. https://doi.org/10.2147/IJN.S28267
54. Ngamcherdtrakul W, Sangvanich T, Reda M, Gu S, Bejan D, Yantasee W. Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. Int J Nanomedicine. 2018;13:4015–27. https://doi.org/10.2147/IJN.S164393
55. Sameti M, Bohr G, Ravi Kumar MN, Kneuer C, Bakowsky U, Nacken M, et al. Stabilisation by freezedrying of cationically modified silica nanoparticles for gene delivery. Int J Pharm. 2003;266(1–2):51–60. https://doi.org/10.1016/s0378-5173(03)00380-6
56. Van Lint S, Renmans D, Broos K, Dewitte H, Lentacker I, Heirman C, et al. The ReNAissanCe of mRNAbased cancer therapy. Expert Rev Vaccines. 2015;14(2):235–51. https://doi.org/10.1586/14760584.2015.957685
57. Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597(7876):318–24. https://doi.org/10.1038/d41586-021-02483-w
58. Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 2023;42(21):e114760. https://doi.org/10.15252/embj.2023114760
59. Castruita JAS, Schneider UV, Mollerup S, Leineweber TD, Weis N, Bukh J, et al. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS. 2023;131(3):128–32. https://doi.org/10.1111/apm.13294
60. Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M, Costales C, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022;185(6):1025–40.e14. https://doi.org/10.1016%2Fj.cell.2022.01.018
61. Krauson AJ, Casimero FVC, Siddiquee Z, Stone JR. Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccines. 2023;8(1):141. https://doi.org/10.1038/s41541-023-00742-7
62. Mulroney TE, Pöyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024;625(7993):189–94. https://doi.org/10.1038/s41586-023-06800-3
63. Jackson LA, Anderson EJ, Rouphael NG, et al. mRNA-1273 Study Group. An mRNA Vaccine against SARSCoV-2 - Preliminary Report. N Engl J Med. 2020;383(20):1920–31. https://doi.org/10.1056/NEJMoa2022483
64. Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24(12):103479. https://doi.org/10.1016/j.isci.2021.103479
65. Turni C, Lefringhausen A. Covid-19 vaccines – An Australian Review. J Clin Exp Immunol. 2022;7:491–508.
66. Di J, Du Z, Wu K, Jin S, Wang X, Li T, et al. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size. Pharm Res. 2022;39(1):105–14. https://doi.org/10.1007/s11095-022-03166-5
67. Igyártó BZ, Qin Z. The mRNA-LNP vaccines – the good, the bad and the ugly? Front Immunol. 2024;15:1336906. https://doi.org/10.3389/fimmu.2024.1336906
68. Schmeling M, Manniche V, Hansen PR. Batch-dependent safety of the BNT162b2 mRNA COVID-19 vaccine. Eur J Clin Invest. 2023;53(8):e13998. https://doi.org/10.1111/eci.13998
69. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94. https://doi.org/10.1038/s41573-020-0075-7
70. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://doi.org/10.1016/0092-8674(93)90529-y
71. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. https://doi.org/10.1038/35888
72. Collotta D, Bertocchi I, Chiapello E, Collino M. Antisense oligonucleotides: a novel Frontier in pharmacological strategy. Front Pharmacol. 2023;14:1304342. https://doi.org/10.3389/fphar.2023.1304342
73. Cai X, Dou R, Guo C, Tang J, Li X, Chen J, et al. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics. 2023;15(5):1502. https://doi.org/10.3390/pharmaceutics15051502
74. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63. https://doi.org/10.1038/nature07228
75. Nevskaya KV, Pershina AG, Hmelevskaya ES, Efimova LV, Ibragimova MK, Dolgasheva DS, et al. Prevention of Metastasis by Suppression of Stemness Genes Using a Combination of microRNAs. J Med Chem. 2024;67(7):5591–602. https://doi.org/10.1021/acs.jmedchem.3c02199
76. Hsin JP, Lu Y, Loeb GB, Leslie CS, Rudensky AY. The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types. Nat Immunol. 2018;19(10):1137–45. https://doi.org/10.1038/s41590-018-0208-x
77. Lambeth LS, Moore RJ, Muralitharan M, Dalrymple BP, McWilliam S, Doran TJ. Characterisation and application of a bovine U6 promoter for expression of short hairpin RNAs. BMC Biotechnol. 2005;5:13. https://doi.org/10.1186/1472-6750-5-13
78. Cai X, Dou R, Guo C, Tang J, Li X, Chen J, et al. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics. 2023;15(5):1502. https://doi.org/10.3390/pharmaceutics15051502
79. Tai W. Current Aspects of siRNA Bioconjugate for In Vitro and In Vivo Delivery. Molecules. 2019;24(12):2211. https://doi.org/10.3390/molecules24122211
80. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829
81. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83. https://doi.org/10.1038/nprot.2013.132
82. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPRCas13. Science. 2017;358(6366):1019-27. https://doi.org/10.1126/science.aaq0180
83. Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 2021;39(6):717–26. https://doi.org/10.1038/s41587-021-00822-w
84. Zhang Z, Wan T, Chen Y, Chen Y, Sun H, Cao T, et al. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing. Macromol Rapid Commun. 2019;40(5):e1800068. https://doi.org/10.1002/marc.201800068
85. Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–59. https://doi.org/10.1038/nrg.2015.34
86. DiEuliis D, Giordano J. Why Gene Editors Like CRISPR/Cas May Be a Game-Changer for Neuroweapons. Health Secur. 2017;15(3):296–302. https://doi.org/10.1089/hs.2016.0120
87. Rose J, Hulscher N, McCullough PA. Determinants of COVID-19 vaccine-induced myocarditis. Ther Adv Drug Saf. 2024;15:20420986241226566. https://doi.org/10.1177/20420986241226566
88. Shitrit P, Zuckerman NS, Mor O, Gottesman BS, Chowers M. Nosocomial outbreak caused by the SARSCoV-2 Delta variant in a highly vaccinated population, Israel, July 2021. Euro Surveill. 2021;26(39):2100822. https://doi.org/10.2807/1560-7917.es.2021.26.39.2100822
89. Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel). 2023;11(5):991. https://doi.org/10.3390/vaccines11050991
90. Roussel Y, Giraud-Gatineau A, Jimeno MT, Rolain JM, Zandotti C, Colson P, et al. SARS-CoV-2: fear versus data. Int J Antimicrob Agents. 2020;55(5):105947. https://doi.org/10.1016/j.ijantimicag.2020.105947
91. Ioannidis JPA, Cripps S, Tanner MA. Forecasting for COVID-19 has failed. Int J Forecast. 2022;38(2):423–38. https://doi.org/10.1016/j.ijforecast.2020.08.004
Рецензия
Для цитирования:
Супотницкий М.В. Опасность мРНК-технологий. Вестник войск РХБ защиты. 2024;8(3):205-231. https://doi.org/10.35825/2587-5728-2024-8-3-205-231. EDN: ifdujf
For citation:
Supotnitskiy M.V. mRNA Technologies Danger. Journal of NBC Protection Corps. 2024;8(3):205-231. (In Russ.) https://doi.org/10.35825/2587-5728-2024-8-3-205-231. EDN: ifdujf