Preview

Journal of NBC Protection Corps

Advanced search

Nanoparticles as Potential Agents of Chemical and Biological Weapons

https://doi.org/10.35825/2587-5728-2022-6-4-304-319

EDN: cgefod

Abstract

The wide distribution in industry, medicine, agriculture, and other areas of human activity of nanoscale objects raise the question of the possibility of their dual use, which in this work means the use for deliberate mass destruction of people. The aim of the work is to consider nanoparticles as potential agents of chemical and biological weapons. Nanoparticles of any type have been shown to have biological activity. This is due to an increase in the surface activity of particles during the transition from microscale to nanoscale and their ability to penetrate the cell, especially cell nucleus. Being non-biological objects, interacting with cell receptors, distorting intracellular signaling pathways and affecting the genetic regulation of the cell, they can cause a variety of pathological effects (oxidative stress, neuroinflammation, neurodegeneration, etc.). Therefore, with the transition from microscales to nanoscales, essentially remaining chemical compounds, particles of non-toxic materials can transform into potential biological and chemical damaging agents. The existing possibilities of their mass use through the respiratory system, skin, gastrointestinal tract and through the introduction of injectable forms of drugs suggest that based on damaging agents of this type, weapons of mass destruction of a new type that are not subject to the Conventions on the Prohibition of Chemical and Biological Weapons can be developed. It is necessary to start developing methods for detecting nanoparticles and other nanoobjects in various environments surrounding a person, food and dosage forms

About the Author

Ján Lakota
Centre of Experimental Medicine, SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia Faculty of Management Comenius University
Slovakia

Centre of Experimental Medicine, SAS, Dubravska cesta 9, 841 04 Bratislava, Slovakia Faculty of Management Comenius University, Odbojárov 10, 820 05 Bratislava, Slovakia. Ján Lakota, MD, PhD.

Odbojárov 10, 820 05 Bratislava



References

1. Vert M., Dоi Y., Hellwich K.H. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012) // Pure Appl. Chemistry. 2012. V. 84. № 2. P. 377–410. https://doi.org/10.1351/PACREC-10-12-04

2. Kumar N., Kumbhat S. Chapter 8. UNIQUE PROPERTIES // In: Essentials in Nanoscience and Nanotechnology. First Ed. John Wiley & Sons, 2016. ISBN 9781119096115.

3. Gleiter H. Nanostructured Materials: Basic Concepts and Microstructure // Acta Mater. 2000. V. 48. P. 1–29.

4. Scholl J.A., García-Etxarri A., Koh A.L. et al. Observation of quantum tunneling between two plasmonic nanoparticles // Nano Lett. 2013. V. 13. P. 564–569.

5. Issa B., Obaidat I.M., Albiss B.A., Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications // Int. J. Mol. Sci. 2013. V. 14. № 11. P. 21266–21305. https://doi.org/10.3390/ijms141121266

6. Bastús N.G., Casals E., Ojea I. et al. The reactivity of colloidal inorganic nanoparticles // In: The Delivery of Nanoparticles [Internet] / Ed. Hashim A.A. London: IntechOpen; 2012. www.intechopen.com/books/2259. https://doi.org/10.5772/2647

7. Khan I., Saeed K., Khan I. Nanoparticles: properties, applications and toxicities // Arabian J. Chem. 2019. V. 12. P. 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

8. Kurapati R., Mukherjee S.P., Martin C. et al. Angew. Chem. Int. Ed. 2018. V. 57. P. 11722 –11727. https://doi.org/10.1002/anie.201806906

9. Backmann N., Kappeler N., Braun T., et al. Sensing surface PEGylation with microcantilevers // Beilstein J. Nanotechnol. 2010. V. 1. P. 3–13. https://doi.org/10.3762/bjnano.1.2

10. Thi T.T.H., Pilkington E.H., Nguyen D.H. et al. Truong. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation // Polymers. 2020. V. 12. P. 298. https://doi.org/10.3390/polym12020298

11. Soenen S., Rivera-Gil P., Montenegro J.-M. et al. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation // NANO TODAY. 2011. V. 6. № 5. P. 446-465. https://doi.org/10.1016/j.nantod.2011.08.001

12. Zolnik B.S., González-Fernández A., Sadrieh N., Dobrovolskaia M.A. Nanoparticles and the immune system // Endocrinology. 2010. V. 151. № 2. P. 458–465. https://doi.org/10.1210/en.2009-1082

13. Esmaeili F., Ghahremani M.H., Esmaeili B. et al. PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution // Int. J. Pharm. 2008. V. 349. № 1-2. P. 249-255. https://doi.org/10.1016/j.ijpharm.2007.07.038

14. Mahon E., Salvati A., Bombelli F.B. et al. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery” // J. Contro.l Release. 2012. V. 161. № 2. P. 164–174.

15. Binnemars-Postma K.A., Ten Hoopen H.W, Storm G., Prakash J. Differential uptake of nanoparticles by human M1 and M2 polarized. Macrophages: protein corona as a critical determinant // Nanomedicine (Lond). 2016. V. 11. № 22. P. 2889–2902. https://doi.org/10.2217/nnm-2016-0233

16. Smulders S., Kaiser J.P., Zuin S. et al. Contamination of nanoparticles by endotoxin: evaluation of different test methods // Part Fibre Toxicol. 2012. V. 9. P. 41. https://doi.org/10.1186/1743-8977-9-41

17. Lieder R., Petersen P.H., Sigurjónsson Ó.E. Endotoxins-the invisible companion in biomaterials research // Tissue Eng. Part B Rev. 2013. V. 19. № 5. P. 391–402. https://doi.org/10.1089/ten.TEB.2012.0636

18. Vetten M.A., Yah C.S., Singh T., Gulumian M. Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications // Nanomedicine. 2014. V. 10. № 7. P. 1391–1399. https://doi.org/10.1016/j.nano.2014.03.017

19. Sharma L.R., Subedi A., Shah B.K. Anaphylaxis to pegylated liposomal Doxorubicin: a case report // West Indian Med. J. 2014. V. 63. № 4. P. 376–377. https://doi.org/10.7727/wimj.2013.270

20. Kotchey G.P., Hasan S.A., Kapralov A.A. et al. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials // Acc. Chem. Res. 2012. V. 45. № 10. P. 1770–1781. https://doi.org/10.1021/ar300106h

21. Eisenbarth S.C., Colegio O.R., O'Connor W. et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants // Nature. 2008. V. 453. № 7198. P. 1122–1126. https://doi.org/10.1038/nature06939

22. Albornoz E.A., Amarilla A.A., Modhiran N. et al. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein // Mol. Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01831-0

23. van Zijverden M., Granum B. Adjuvant activity of particulate pollutants in different mouse models // Toxicology. 2000. V. 152. № 1-3. P. 69–77. https://doi.org/10.1016/s0300-483x(00)00293-6

24. Lutsiak M.E., Kwon G.S., Samuel J. Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses // J. Pharm. Pharmacol. 2006. V. 58. № 6. P. 739–747. https://doi.org/10.1211/jpp.58.6.0004

25. Xiang S.D., Scholzen A., Minigo G. et al. Pathogen recognition and development of particulate vaccines: does size matter? // Methods. 2006. V. 40. № 1. P. 1–9. https://doi.org/10.1016/j.ymeth.2006.05.016

26. Omlor A.J., Nguyen J., Bals R., Dinh Q.T. Nanotechnology in respiratory medicine // Respir. Res. 2015. V. 16(1). P. 64. https://doi.org/10.1186/s12931-015-0223-5

27. Andujar P., Lanone S., Brochard P., Boczkowski J. Respiratory effects of manufactured nanoparticles // Rev. Ma.l Respir. 2011. V. 28. № 8. P. e66-75. https://doi.org/10.1016/j.rmr.2011.09.008

28. Karmakar A., Zhang Q., Zhang Y. Neurotoxicity of nanoscale materials // J. Food Drug Anal // 2014. V. 22. № 1. P. 147–160. https://doi.org/10.1016/j.jfda.2014.01.012

29. Wang, L., Davidson D.C., Castranova V., Rojanasakul Y. Pulmonary effects of carbon nanomaterials // In: Biomedical Applications and Toxicology of Carbon Nanomaterials / Eds. Chen C., Wang H. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. P. 163–193. https://doi.org/10.1002/9783527692866.ch6

30. Xu J., Alexander D.B., Futakuchi M. et al. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes // Cancer Sci. 2014. V. 105. № 7. P. 763–769. https://doi.org/10.1111/cas.12437

31. Wang Q., Wang Q., Zhao Z., et al. Pleural translocation and lesions by pulmonary exposed multiwalled carbon nanotubes // J. Toxicol. Pathol. 2020. V. 33. № 3. P. 145–151. https://doi.org/10.1293/tox.2019-0075

32. Brouwer D., Kuijpers E., Bekker C. et al. Field and laboratory measurements related to occupational and consumer exposures // In: Safety of Nanomaterials along Their Lifecycle: Release, Exposure, and Human Hazards / Eds. Wohlleben W., Kuhlbusch T.A.J., Schnekenburger J., Lehr C.-M. CRC Press, 2014. P. 277–314.

33. Working, IARC Monograph. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes // Ann. Ist. Super Sanita. 2014. V. 50. P. 111–118.

34. Shvedova A.A., Kisin E.R., Yanamala N. et al. MDSC and TGFβ are required for facilitation of tumor growth in the lungs of mice exposed to carbon nanotubes // Cancer. Res. 2015. V. 75. № 8. P. 1615–1623. https://doi.org/10.1158/0008-5472.CAN-14-2376

35. Powell J.J., Faria N., Thomas-McKay E., Pele L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract // J. Autoimmun. 2010. V. 34. № 3. P. J226–J233. https://doi.org/10.1016/j.jaut.2009.11.006

36. Zhang T., Xu M., He L. et al. Synthesis, characterization and cytotoxicity of phosphoryl cholinegrafted water-soluble carbon nanotubes // Carbon. 2008. V. 46. № 13. P. 1782–1791. https://doi.org/10.1016/j.carbon.2008.07.033

37. Bouwmeester H., Poortman J., Peters R.J. et al. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model // ACS Nano. 2011. V. 5. № 5. P. 4091–4103. https://doi.org/10.1021/nn2007145

38. Lai X., Blazer-Yost B.L., Clack J.W. et al. Protein expression profiles of intestinal epithelial co-cultures: effect of functionalised carbon nanotube exposure // Int. J. Biomed. Nanosci. Nanotechnol. 2013. V. 3. № 1–2. P. 127–162. https://doi.org/10.1504/IJBNN.2013.054508

39. Chen H., Wang B., Gao D. et al. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria // Small. 2013. V. 9. № 16. P. 2735–2746. https://doi.org/10.1002/smll.201202792

40. Chen H., Wang B., Zhao Y., Feng W. Nanoparticle effects on gastrointestinal microbiome // Nanomed. Nanotechnol. Biol. Med. 2016. V. 12. № 2. P. 457.

41. Bouwmeester H., van der Zande M., Jepson M.A. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018. V. 10. № 1. P. e1481. https://doi.org/10.1002/wnan.1481

42. Pietroiusti A., Magrini A., Campagnolo L. New frontiers in nanotoxicology: gut microbiota/microbiomemediated effects of engineered nanomaterials // Toxicol. Appl. Pharmacol. 2016. V. 299. P. 90–95. https://doi.org/10.1016/j.taap.2015.12.017

43. Huerta-García E., Zepeda-Quiroz I., SánchezBarrera H., et al. Internalization of titanium dioxide nanoparticles is cytotoxic for H9c2 rat cardiomyoblasts // Molecules. 2018. V. 23. № 8. P. 1955. https://doi.org/10.3390/molecules23081955

44. Panov V., Minigalieva I., Bushueva T. et al. Some peculiarities in the dose dependence of separate and combined in vitro cardiotoxicity effects induced by CdS and PbS nanoparticles with special attention to hormesis manifestations // Dose Response. 2020. V. 18. № 1. https://doi.org/10.1177/1559325820914180

45. Savi M., Rossi S., Bocchi L. et al. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue // Part Fibre Toxicol. 2014. V. 11. P. 63. https://doi.org/10.1186/s12989-014-0063-3

46. Akhtar M.J., Ahamed M., Alhadlaq H. Gadolinium oxide nanoparticles induce toxicity in human endothelial HUVECs via lipid peroxidation, mitochondrial dysfunction and autophagy modulation // Nanomaterials (Basel). 2020. V. 10. № 9. P. 1675. https://doi.org/10.3390/nano10091675

47. Li Y., Li F., Zhang L., et al. Zinc oxide nanoparticles induce mitochondrial biogenesis impairment and cardiac dysfunction in human iPSCderived cardiomyocytes // Int. J. Nanomedicine. 2020. V. 15. P. 2669–2683. https://doi.org/10.2147/IJN.S249912

48. Salehcheh M., Alboghobeish S., Dehghani M.A., Zeidooni L. Multi-walled carbon nanotubes induce oxidative stress, apoptosis, and dysfunction in isolated rat heart mitochondria: protective effect of naringin // Environ. Sci. Pollut. Res. Int. 2020. V. 27. № 12. P. 13447– 13456. https://doi.org/10.1007/s11356-020-07943-w

49. Song Y., Wu L., Cao J., Song B. Preparation of nano zinc particles and evaluation of its application in mouse myocardial infarction model // J. Nanosci. Nanotechnol. 2021. V. 21. № 2. P. 1196–1201. https://doi.org/10.1166/jnn.2021.18662

50. Trigueiro N.S.S., Gonçalves B.B., Dias F.C. et al. Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata) // Environ. Toxicol. Pharmacol. 2021. V. 81. P. 103521. https://doi.org/10.1016/j.etap.2020.103521

51. Pennarossa G., Arcuri S., De Iorio T. et al. Current advances in 3D tissue and organ reconstruction // Int. J. Mol. Sci. 2021. V. 22. № 2. P. 830. https://doi.org/10.3390/ijms22020830

52. Chen X., Zhang Y.S., Zhang X., Liu C. Organon-a-chip platforms for accelerating the evaluation of nanomedicine // Bioact. Mater. 2020. V. 6. № 4. P. 1012– 1027. https://doi.org/10.1016/j.bioactmat.2020.09.022

53. Cheng Y., Chen Z., Yang S. et al. Nanomaterialsinduced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques // Sci. Total Environ. 2021. V. 800. P. 149584. https://doi.org/10.1016/j.scitotenv.2021.149584

54. Hu Y.L., Gao J.Q. Potential neurotoxicity of nanoparticles // Int. J. Pharm. 2010. V. 394. № 1-2. P. 115–121. https://doi.org/10.1016/j.ijpharm.2010.04.026

55. Kreyling W.G. Discovery of unique and ENMspecific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats // Toxicol. Appl. Pharmacol. 2016. V. 299. P. 41–46. https://doi.org/10.1016/j.taap.2016.02.004

56. Fu P.P., Xia Q., Hwang H.M. et al. Mechanisms of nanotoxicity: generation of reactive oxygen species // J. Food Drug Anal. 2014. V. 22. № 1. P. 64–75. https://doi.org/10.1016/j.jfda.2014.01.005

57. Dobson A.W., Erikson K.M., Aschner M. Manganese neurotoxicity // Ann. N. Y. Acad. Sci. 2004. V. 1012. P. 115–128. https://doi.org/10.1196/annals.1306.009

58. Song B., Zhang Y., Liu J. et al. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress? // Nanoscale Res. Lett. 2016. V. 11. № 1. P. 291. https://doi.org/10.1186/s11671-016-1508-4

59. Han D., Tian Y., Zhang T. et al. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats // Int. J. Nanomedicine. 2011. V. 6. P. 1453–1461. https://doi.org/10.2147/IJN.S18507

60. Sun J., Zhang Q., Wang Z., Yan B. Effects of nanotoxicity on female reproductivity and fetal development in animal models // Int. J. Mol. Sci. 2013. V. 14. № 5. P. 9319–9337. https://doi.org/10.3390/ijms14059319

61. Dooley K., Zon L.I. Zebrafish: a model system for the study of human disease // Curr. Opin. Genet. Dev. 2000. V. 10. № 3. P. 252–256. https://doi.org/10.1016/s0959-437x(00)00074-5

62. Gao G., Ze Y., Li B. et al. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles // J. Hazard Mater. 2012. V. 243. P. 19–27. https://doi.org/10.1016/j.jhazmat.2012.08.049

63. Shimizu M., Tainaka H., Oba T., Mizuo K. et al. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse // Part Fibre Toxicol. 2009. V. 6. P. 20. https://doi.org/10.1186/1743-8977-6-20

64. Monteiro-Riviere, N.A. Safety of nanoparticle skin penetration / In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers / Eds. Dragicevic N., Maibach I.H. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. P. 363–376. ISBN 9783662478622.

65. Mahmoud N.N., Al-Qaoud K.M., Al-Bakri A.G. et al. Colloidal stability of gold nanorod solution upon exposure to excised human skin: Effect of surface chemistry and protein adsorption // Int. J. Biochem. Cell Biol. 2016. V. 75. P. 223–231. https://doi.org/10.1016/j.biocel.2016.02.020

66. Larese Filon F., Bello D., Cherrie J.W., et al. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption // Int. J. Hyg. Environ. Health. 2016. V. 219. № 6. P. 536–544. https://doi.org/10.1016/j.ijheh.2016.05.009

67. Shvedova A.A., Castranova V., Kisin E.R. et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells // J. Toxicol. Environ. Health A. 2003. V. 66. № 20. P. 1909– 1926. https://doi.org/10.1080/713853956

68. Wright C., Iyer A.K., Wang L. et al. Effects of titanium dioxide nanoparticles on human keratinocytes // Drug Chem Toxicol. 2017. V. 40. № 1. P. 90–100. https://doi.org/10.1080/01480545.2016.1185111

69. Hirai T., Yoshioka Y., Higashisaka K., Tsutsumi Y. Potential hazards of skin exposure to nanoparticles // In: Biological Effects of Fibrous and Particulate Substances / Eds. Otsuki T., Yoshioka Y., Holian A. Japan: Springer, 2016. P. 123–135. ISBN 9784431557319

70. Roach K.A., Stefaniak A.B., Roberts J.R. Metal nanomaterials: immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease // J. Immunotoxicol. 2019. V. 16. № 1. P. 87–124. https://doi.org/10.1080/1547691X.2019.1605553


Review

For citations:


Lakota J. Nanoparticles as Potential Agents of Chemical and Biological Weapons. Journal of NBC Protection Corps. 2022;6(4):304-319. https://doi.org/10.35825/2587-5728-2022-6-4-304-319. EDN: cgefod

Views: 1341


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)