Preview

Journal of NBC Protection Corps

Advanced search

Humanized Antibodies. Modern Developments and Prospects for the Creation of Medical Protectors Against Biological Threads and Hazards

https://doi.org/10.35825/2587-5728-2023-7-3-261-275

EDN: ofpwng

Abstract

Passive immunization is the variant of the immunization, in which antibodies are introduced into the body in quantities, sufficient to provide a therapeutic effect. One of the «windows of opportunity» for passive immunization is an urgent post-exposure prophylaxis of infectious diseases and their preventive therapy, especially in the absence of chemotherapy drugs suitable for these purposes or their insufficient effectiveness. The existing heterologous drugs based on hyperimmune sera are highly reactogenic, and obtaining donor human immunoglobulins is associated with a number of ethical and technical restrictions. Therefore, biotechnologies that make it possible to obtain, on an industrial scale, low-reactogenic preparations of chimeric monoclonal antibodies with partially human specificity, as well as recombinant antibodies with fully human specificity, have enormous prospects. This trend is called «humanization of antibodies.» The purpose of this article is to analyze modern developments and to show the prospects for creating humanized antibodies specific to antigens of pathogens of especially dangerous infections and toxins as medical biological protection agents. The sources of the research are English-language studies and the scientific literature available via the Internet. The research method is an analysis of scientific sources on the topic being studied from the general to the specific. Results and discussion. The history of the creation of specific prevention drugs based on heterologous and homologous sera/immunoglobulins and monoclonal antibodies is presented. It has been shown in the article, that humanized specific monoclonal antibodies are widely used currently for the treatment of a number of severe chronic diseases (for example, rheumatoid arthritis, psoriasis, immunoinflammatory bowel diseases, malignant tumors). Conclusion. Recently, there has been an increase in numbers of both scientific research and developments, and drugs of recombinant antibodies already approved for use in clinical practice, specific to antigens of pathogens of especially dangerous infections and toxins - potential agents of bioterrorism, such as the anthrax microbe, botulinum toxins of various types, plant toxins ricin and abrin, ebolaviruses, coronaviruses. Such drugs can also be used as medical protectors against biological threats and hazards.

About the Authors

A. S. Gorshkov
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Anton S. Gorshkov, researcher of the Scientific and Researcher Department. Cand. Sci. (Med.)

Oktyabrsky Avenue, 119, Kirov 610000



D. V. Pechenkin
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Denis V. Pechenkin, chief of the Scientific and Researcher Department. Cand. Sci. (Med.)

Oktyabrsky Avenue, 119, Kirov 610000



A. V. Kuznetsovskiy
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Andrey V. Kuznetsovskiy, chief of the Department of Planning of Science and Research – Deputy Chief of the Branch. Cand. Sci. (Biol.)

Oktyabrsky Avenue, 119, Kirov 610000



D. V. Borovskoy
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Denis V. Borovskoy, chief of the Scientific and Researcher Stewardship. Cand. Sci. (Biol.)

Oktyabrsky Avenue, 119, Kirov 610000



References

1. McCulloch EA, Till JE. The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res. 1960;13:115–25.

2. Бернет Ф. Целостность организма и иммунитет. М.: Мир; 1964. 184 с. Burnet FM. The integrity of the body: a discussion of modern immunological ideas [trans. from English]. Moscow: Mir; 1964. 184 p. (in Russian).

3. Саяпина ЛВ, Гаврилова НА, Никитюк НФ, Обухов ЮИ, Бондарев ВП. К вопросу о применении в практическом здравоохранении гетерологичных препаратов. Проблемы особо опасных инфекций. 2018;(3):40–5. Sayapina L.V., Gavrilova N.A., Nikityuk N.F., Obukhov Yu.I., Bondarev V.P. Concerning the Application of Heterologous Preparations in Practical Healthcare. Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections]. 2018; 3:40–5 (in Russian). https://doi.org/10.21055/0370-1069-2018-3-40-45

4. Перелыгина ОВ, Комаровская ЕИ, Мухачева АВ, Саяпина ЛВ, Обухов ЮИ, Бондарев ВП. Гетерологичные сывороточные препараты в практике современной медицины. БИОпрепараты. Профилактика, диагностика, лечение. 2017;17(1):41–7. Perelygina OV, Komarovskaya EI, Muchacheva AV, Sayapina LV, Obukhov YuI, Bondarev VP. Clinical experience with heterologous serum products. BIOpreparations. Prevention, Diagnosis, Treatment. 2017; 17(1); 41–7 (in Russian).

5. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7. PMID 1172191.

6. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):30. https://doi.org/10.1186/s12929-019-0592-z

7. Parren PWHI, Carter PJ, Plückthun A. Changes to International Nonproprietary Names for antibody therapeutics 2017 and beyond: of mice, men and more. MAbs. 2017;9(6):898–906. https://doi.org/10.1080/19420862.2017.1341029

8. Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83. https://doi.org/10.4161/mabs.2.1.10786

9. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–5. https://doi.org/10.1038/321522a0

10. Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature. 1994;368:856–9.

11. Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet. 1997;15:146–56.

12. Солопова ОН, Мисюрин ВА. Биспецифические антитела в клинике и клинических исследованиях (обзор литературы). Клиническая онкогематология. 2019;12(2):125–44. https://doi.org/10.21320/2500-2139-2019-12-2-125-144 Solopova ON, Misyurin VA. Bispecific antibodies in clinic and clinical trials (literature review). Clinical oncohematology. 2019;12(2):125–44 (in Russian).

13. Супотницкий МВ. Биологическая война. Введение в эпидемиологию искусственных эпидемических процессов и биологических поражений: монография. М.: «Кафедра», «Русская панорама»; 2013. 1136 с. Supotnitskiy MV. Biological war. Introduction in epidemiology of artificial processes and biological damages: monography. Moscow: «Kafedra», «Russian panorama»; 2013. 1136 p. (in Russian).

14. Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, et al. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel). 2017;9(10):309. https://doi.org/10.3390/toxins9100309.

15. Miethe S, Mazuet C, Liu Y, Tierney R, Rasetti-Escargueil C, Avril A, et al. Development of Germline-Humanized Antibodies Neutralizing Botulinum Neurotoxin A and B. PLoS One. 2016;11(8):e0161446. https://doi.org/10.1371/journal.pone.0161446

16. Espinoza Y, Wong D, Ahene A, Der K, Martinez Z, Pham J, et al. Pharmacokinetics of Human Recombinant Anti-Botulinum Toxin Antibodies in Rats. Toxins (Basel). 2019;11(6):345. https://doi.org/10.3390/toxins11060345

17. Raja SM, Guptill JT, Juel VC, Walter EB, Cohen-Wolkowiez M, Hill H, et al. First-in-Human Clinical Trial to Assess the Safety, Tolerability and Pharmacokinetics of Single Doses of NTM-1633, a Novel Mixture of Monoclonal Antibodies against Botulinum Toxin E. Antimicrob Agents Chemother. 2022;66(4):e0173221. https://doi.org/10.1128/aac.01732-21

18. Tomic MT, Farr-Jones S, Syar ES, Niemuth N, Kobs D, Hackett MJ, et al. Neutralizing Concentrations of Anti-Botulinum Toxin Antibodies Positively Correlate with Mouse Neutralization Assay Results in a Guinea Pig Model. Toxins (Basel). 2021;13(9):671. https://doi.org/10.3390/toxins13090671

19. Guptill JT, Raja SM, Juel VC, Walter EB, Cohen-Wolkowiez M, Hill H, et al. Safety, Tolerability, and Pharmacokinetics of NTM-1632, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin B. Antimicrob Agents Chemother. 2021;65(7):e0232920. https://doi.org/10.1128/AAC.02329-20

20. Matsumura T, Amatsu S, Misaki R, Yutani M, Du A, Kohda T, et al. Fully Human Monoclonal Antibodies Effectively Neutralizing Botulinum Neurotoxin Serotype B. Toxins (Basel). 2020;12(5):302. https://doi.org/10.3390/toxins12050302

21. Lam KH, Tremblay JM, Vazquez-Cintron E, Perry K, Ondeck C, Webb RP., et al. Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Rep. 2020;30(8):2526–39. https://doi.org/10.1016/j.celrep.2020.01.107

22. Fan Y, Lou J, Tam CC, Wen W, Conrad F, Leal da Silva Alves P, et al. A Three-Monoclonal Antibody Combination Potently Neutralizes BoNT/G Toxin in Mice. Toxins (Basel). 2023;15(5):316. https://doi.org/10.3390/toxins15050316

23. Беневоленский СВ, Боков МН, Зацепин СС, Клячко ЕВ, Позднякова Л.П., Свешников П.Г., Солопова О.Н., Чулкин А.М. Участок связывания антигена (Fab), в том числе гуманизированный Fab, против ботулинического нейротоксина С (варианты), способ получения Fab с использованием дрожжей, способ и набор для детекции ботулинического нейротоксина С. Патент РФ. 2016109190. Опубл. 22.06.2017. Бюл. № 18. Benevolensky SV, Bokov MN, Zatsepin SS, Klyachko EV, Pozdnyakova LP, Sveshnikov PG, et al. Antigen binding site (Fab), including humanized Fab, against botulinum neurotoxin C (variants), method for producing Fab using yeast, method and kit for detection of botulinum neurotoxin C. RU Patent. 20161 09190. Publ. 06/22/2017. Bull. No. 18 (in Russian).

24. Peng J, Wu J, Shi N, Xu H, Luo L, Wang J, et al. A Novel Humanized Anti-Abrin A Chain Antibody Inhibits Abrin Toxicity In Vitro and In Vivo. Front Immunol. 2022;13:831536. https://doi.org/10.3389/fimmu.2022.831536

25. Castelletti D, Fracasso G, Righetti S, Tridente G, Schnell R, Engert A, Colombatti M. A dominant linear В-cell epitope of ricin А-chain is the target of a neutralizing antibody response in Hodgkin’s lymphoma patients treated with an anti-CD25 immunotoxin. Clin Exp Immunol. 2004;136:365–72. https://doi.org/10.1111/j.1365-2249.2004.02442.x

26. Colombatti M, Johnson VG, Skopicki HA, Fendley B, Lewis MS, Youle RJ. Identification and characterization of a monoclonal antibody recognizing a galactose-binding domain of the toxin ricin. J Immunol. 1987;138:3339–44.

27. McGuinness CR, Mantis NJ. Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin В subunit. Infect Immun. 2006;74:3463–70. https://doi.org/74/6/3463[pii]10.1128/IAI.00324-06

28. O'Hara JM, Yermakova A, Mantis NJ. Immunity to ricin: fundamental insights into toxin-antibody interactions. Curr Top Microbiol Immunol. 2012;357:209–41. https://doi.org/10.1007/822011193

29. Avril A, Tournier JN, Paucod JC, Fournes B, Thullier P, Pelat T. Antibodies against Anthrax Toxins: A Long Way from Benchlab to the Bedside. Toxins (Basel). 2022;14(3):172. https://doi.org/10.3390/toxins14030172

30. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science. 2016;351(6279):1339–42. https://doi.org/10.1126/science.aad5224

31. Rijal P, Donnellan FR. A review of broadly protective monoclonal antibodies to treat Ebola virus disease. Curr Opin Virol. 2023;61:101339. https://doi.org/10.1016/j.coviro.2023.101339

32. Pascal KE, Dudgeon D, Trefry JC, Anantpadma M, Sakurai Y, Murin CD, et al. Development of clinicalstage human monoclonal antibodies that treat advanced Ebola virus disease in nonhuman primates. J Infect Dis. 2018;218:S612–26.

33. Климов НА, Симбирцев АС. Терапевтические моноклональные антитела. СПб.: Фолиант; 2021. 208 с. Klimov NA, Simbirtsev AS. Therapeutic monoclonal antibodies. St. Petersburg: Foliant, 2021. 208 p. (in Russian).


Review

For citations:


Gorshkov A.S., Pechenkin D.V., Kuznetsovskiy A.V., Borovskoy D.V. Humanized Antibodies. Modern Developments and Prospects for the Creation of Medical Protectors Against Biological Threads and Hazards. Journal of NBC Protection Corps. 2023;7(3):261-275. (In Russ.) https://doi.org/10.35825/2587-5728-2023-7-3-261-275. EDN: ofpwng

Views: 811


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)