Preview

Journal of NBC Protection Corps

Advanced search

Armor Piercing Projectiles Based on Depleted Uranium and the Consequences of Their Use for the Environment and People

https://doi.org/10.35825/2587-5728-2023-7-1-6-23

EDN: rhsvza

Abstract

   The intention of the collective West to supply the armed forces of Ukraine with armor-piercing shells with cores (penetrators) made of depleted uranium (DU), is changing the situation in the zone of special military operation (SVO). A new damaging factor is introduced into combat operations – uranium-238 (238U), one of the longest-lived natural radioactive isotopes of uranium.

   The purpose of the review is to identify the signs and consequences of the use of armor-piercing projectiles based on depleted uranium.

   Materials and research methods. The sources available through the PubMed, Google Scholar and Russian Electronic Library databases were analyzed.

   Research results. NATO uses DU in 20-, 25-, 30-, 105-, 120- and 140-mm caliber projectiles. The cores are made from recycled DU, which is a waste from the production of nuclear weapons. Due to man-made isotopes, it is more radioactive than DU from natural uranium. When such a projectile hits an armored object, a large amount of respirable radioactive and toxic dust of black uranium oxides, small fragments and fragments of the penetrator, remaining in the armored vehicles and around it, is formed. One 120 mm projectile produces approximately 950 g of black dust. Almost 99 % of the internal dose received by the military will come from alpha particles, the most dangerous to health. Projectiles that miss their targets sink deep into the soil, their penetrators corrode for decades, releasing soluble uranium compounds into underground water sources. In areas where DU shells were used, mass diseases of «unexplained etiology» are observed among military personnel and civilians, reducing their life expectancy and fertility.

   Discussion of results and conclusions. The first signs of the use of shells with DU, which can be installed on the battlefield: round holes in the armor of tanks and the presence of solid black dust around them and in the tank itself. In case of fires in the warehouses of such shells, due to other oxidation conditions, crumbling yellow dust is formed. When examining it, it is necessary to pay attention to the presence of elevated concentrations of 236U. The fact that a soldier was hit by DU can be confirmed by the presence of uranium in his urine. The use of DU shells on the territory of the Russian Federation, in terms of its consequences for people and nature, is the use of radiological weapons, a disguised form of nuclear warfare. And it must be treated accordingly.

About the Author

M. V. Supotnitskiy
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Mikhail Vasilyevich Supotnitskiy, Senior Researcher, Chief Specialist, Candidate of  Biological Sciences

111024

Entuziastov Passage, 19

Moscow



References

1. Bleise A., Danesi P., Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview // J. Environ. Radioact. 2003. V. 64. P. 93–112. doi: 10.1016/s0265-931x(02)00041-3

2. Zhang L., Chu J., Xia B. et al. Health effects of particulate uranium exposure // Toxics. 2022. V. 10. № 10. P. 575. doi: 10.3390/toxics10100575

3. Bekman I.N. Uranus. Moscow. 2009 (in Russian).

4. Shaki F., Zamani E., Arjmand A., Pourahmad J. A Review on toxicodynamics of depleted uranium // Iran. J. Pharm. Res. 2019. V. 18 (Suppl1). P. 90–100. doi: 10.22037/ijpr.2020.113045.14085

5. Fairlie I. Depleted uranium: properties, military use and health risks // Med. Confl. Surviv. 2009. V. 25. № 1. P. 41–64. doi: 10.1080/13623690802568962

6. Bem H., Bou-Rabee F. Environmental and health consequences of depleted uranium use in the 1991 Gulf War // Environ. Int. 2004. V. 30. № 1. P. 23–34. doi: 10.1016/S0160-4120(03)00151-X

7. Yue Y.C., Li M.H., Wang HB. et al. The toxicological mechanisms and detoxification of depleted uranium exposure // Environ Health Prev. Med. 2018. V. 23. № 18. doi: 10.1186/s12199-018-0706-3

8. Kazery J.A., Proctor G., Larson S.L. et al. Distribution and fractionation of uranium in weapon tested range soils // ACS Earth Space Chem. 2021. V. 5. № 2. P. 356–364. doi: 10.1021/acsearthspacechem.0c00326

9. Katz S.A. The chemistry and toxicology of depleted uranium // Toxics. 2014. V. 2. P. 50–78. doi: 10.3390/toxics2010050

10. Bjorklund G., Semenova Y., Pivina L. et al. Uranium in drinking water: a public health threat // Arch. Toxicol. 2020. V. 94. № 5. P. 1551–1560. doi: 10.1007/s00204-020-02676-8

11. Briner W. The toxicity of depleted uranium // Int. J. Environ. Res. Public. Health. 2010. V. 7. № 1. P. 303–313. doi: 10.3390/ijerph7010303

12. Fahey D. Science or science fiction? Facts, myths and propaganda in the debate over depleted uranium weapons. Berkeley, California, 2003.

13. Kathren R.L., Burklin R.K. Acute chemical toxicity of uranium // Health Phys. 2008. V. 94. № 2. P. 170–179. doi: 10.1097/01.HP.0000288043.94908.1f

14. Dasari S., Guo F., Nie J. et al. Horizontal and vertical transport of uranium in an arid weapon-tested ecosystem // ACS Earth Space Chem. 2022. V. 6. № 5. P. 1321–1330. doi: 10.1021/acsearthspacechem.2c00028

15. Gudkov S.V., Chernikov A.V., Bruskov V.I. Chemical and radiation toxicity of uranium compounds // Ros. him. zh. (Zh. Ros. him. ob-va im. D. I. Mendeleeva). 2014. V. LVIII, № 3, 4. P. 73–82 (in Russian).

16. Betti M. Civil use of depleted uranium // J. Environ. Radioact. 2003. V. 64. № 2–3. P. 113–119. doi: 10.1016/s0265-931x(02)00042-5

17. Handley-Sidhu S., Keith-Roach M.J., Lloyd J.R., Vaughan D.J. A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium // Sci. Total. Environ. 2010. № 1. P. 5690–5700. doi: 10.1016/j.scitotenv.2010.08.028

18. Babkin A.V., Veldanov V.A., Grjaznov E.F. et al. Ammunition / Ed. Selivanov V.A. Vol. 1. Moscow. 2016 (in Russian).

19. Trueman E.R., Black S., Read D. Characterisation of depleted uranium (DU) from an unfired CHARM-3 penetrator // Sci. Total. Environ. 2004. V. 327. № 1-3. P. 337–340. doi: 10.1016/S0048-9697(03)00401-7

20. Li W.B., Gerstmann U.C., Höllriegl V. et al. Radiation dose assessment of exposure to depleted uranium // J. Expo. Sci. Environ. Epidemiol. 2009. V. 19. № 5. P. 502–514. doi: 10.1038/jes.2008.40

21. Jungk R. Brighter than a thousand suns: a personal history of the atomic scientists. N. Y. 1956.

22. Nenahov Ju.Ju. Miracle weapon of the Third Reich. Minsk. 1999 (in Russian).

23. Hazanov A.M. Portugal and its empire in the era of Salazar and Caetano. Moscow. 2014 (in Russian).

24. Peacock H.B. Pyrophoricity of uranium (U). Westinghcuse Savannah River Company. 1992.

25. Dodd B., Coghe F. Damage caused to metals by kinetic and chemical energy projectiles // ResearchGate. 2015. 16 June. doi: 10.13140/RG.2.1.1667.0881

26. Fetter S., von Hippel F. The hazard posed by depleted uranium munitions // Science and Global Security. 1999. V. 8. № 2. P. 125–161.

27. Papastefanou C. Depleted uranium in military conflicts and the impact on the environment // Health Phys. 2002. V. 83. № 2. P. 280–282. doi: 10.1097/00004032-200208000-00013

28. Medina V.F., Waisner S. Methods to reduce sand ejecta from projectile impact – a scaled study with the goal of application to depleted uranium penetrator catch boxes. Army Range Technology Program ERDC/EL TR-12-10. U. S. Army Corps of Engineers Washington. 2012.

29. McClain D.E., Benson K.A., Dalton T.K. et al. Biological effects of embedded depleted uranium (DU): summary of armed forces radiobiology research institute research // Sci. Total. Environ. 2001. V. 274. № 1–3. P. 115–118. doi: 10.1016/s0048-9697(01)00734-3

30. Chazel V., Gerasimo P., Dabouis V. et al. Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank // Radiat. Prot. Dosimetry. 2003. V. 105. № 1–4. P. 163–166. doi: 10.1093/oxfordjournals.rpd.a006214

31. Lind O.C., Tschiersch J., Salbu B. Nanometer-micrometer sized depleted uranium (DU) particles in the environment // J. Environ. Radioact. 2020. 106077. doi: 10.1016/j.jenvrad.2019.106077

32. Lind O.C., Salbu B., Skipperud L et al. Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait // J. Environ. Radioact. 2009. V. 100. P. 301–307. doi: 10.1016/j.jenvrad.2008.12.018

33. Lind O.C., Oughton D., Salbu B. The NMBU FIGARO low dose irradiationfacility // Int. J. Radiat. Biol. 2019. V. 95. P. 76–81. doi: 10.1080/09553002.2018.1516906

34. Nemery B. Metal toxicity and the respiratory tract // Eur. Respir. J. 1990. V. 3. № 2. P. 202–219.

35. Guilmette R.A., Parkhurst M.A. Dose assessment for inhalation intakes in complex, energetic environments: experience from the US Capstone study // Radiation Protection Dosimetry. 2007. V. 127, Is. 1–4. P. 516–520. doi: 10.1093/rpd/ncm359

36. Durakovic A., Horan P., Dietz L.A., Zimmerman I. Estimate of the time zero lung burden of depleted uranium in Persian Gulf War veterans by the 24-hour urinary excretion and exponential decay analysis // Mil. Med. 2003. V. 168. P. 600–605.

37. Barber D.S., Hancock S.K., McNally A.M. et al. Neurological effects of acute uranium exposure with and without stress // Neurotoxicology. 2007. V. 28. P. 1110–1119. doi: 10.1016/j.neuro.2007.05.014

38. Monleau M., Bussy C., Lestaevel P. et al. Bioaccumulation and behavioral effects of depleted uranium in rats exposed to repeated inhalations // Neurosci. Lett. 2005. V. 390. P. 31–36.

39. Roszell L.E., Hahn F.F., Lee R.B., Parkhurst M.A. Assessing the renal toxicity of capstone depleted uranium oxides and other uranium compounds // Health Phys. 2009. V. 96. P. 343–351. doi: 10.1097/01.HP.0000338421.07312.ed

40. Ma M., Wang R., Xu L. et al. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades // Environ. Int. 2020. V. 145. 106107. doi: 10.1016/j.envint.2020.106107

41. Bourgeois D., Burtpichat B., Goff X.L. et al. Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue // Anal. Bioanal. Chem. 2015. V. 407. № 22. P. 6619–6625. doi: 10.1007/s00216-015-8835-7

42. Toque C., Milodowski A.E., Baker A.C. The corrosion of depleted uranium in terrestrial and marine environments // J. Environ. Radioact. 2013. doi: 10.1016/j.jenvrad.2013.01.001

43. Danesi P.R., Markowicz A., Chinea-Cano E. et al. Depleted uranium particles in selected Kosovo samples // J. Environ. Radioact. 2003. V. 64. P. 143–154. doi: 10.1016/s0265-931x(02)00045-0

44. Fischer H. Depleted uranium: sources, exposure and health effects // World Health Organ. 2001. V. 4. P. 324–325.


Review

For citations:


Supotnitskiy M.V. Armor Piercing Projectiles Based on Depleted Uranium and the Consequences of Their Use for the Environment and People. Journal of NBC Protection Corps. 2023;7(1):6-23. (In Russ.) https://doi.org/10.35825/2587-5728-2023-7-1-6-23. EDN: rhsvza

Views: 1721


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)