Preview

Journal of NBC Protection Corps

Advanced search

Modern Directions of Creating New Protective Materials and Tissues for Means of Individual and Collective Protection against Toxic Chemicals and Pathogenic Microorganisms

https://doi.org/10.35825/2587-5728-2019-3-3-217-254

EDN: deojvf

Abstract

The purpose of this work is to identify technologies of the production of materials and fabrics that provide protection against toxic chemicals and pathogens for the development of personal and collective protective equipment. These materials and tissues should have specific properties of «self-cleaning» (selfdegassing). The article is dedicated to the consideration of the results of the use of new protective materials and fabrics during the creation of modern filtering and sorbing protective equipment of the «soldier of the future». It is shown in the article, that regardless of the method of producing protective materials on the basis of activated carbon or sorbents, they do not possess the «self-cleaning» properties. Their common significant drawback is the possibility of desorption of toxic substances. In addition, there is also a limitation of their protective properties by the sorption capacity of activated carbon (carbon fibers). As a result, the absence of toxic vapors behind the layer of protective material can be guaranteed for a limited period of time. As a rule, this period of time does not exceed 24. In the nearest future the electrospinning technology, used to obtain filtering fabrics, will create a wide range of materials with various properties, including anti-aerosol, degassing, antimicrobial, etc. The metal organic frameworks (MOFs) based on zirconium, NU-1000, UiO-66, seem to be the most attractive among the MOFs for the creation of means of degassing and indication of toxic agents. The analysis of data obtained in the field of creation of filtering and sorbing «self-cleaning» (self-degassing) materials for personal protective equipment showed that these materials can acquire such properties due to their functionalization while using nanosized metalcontaining particles with antibacterial properties, as well as enzymes that catalyze hydrolysis of certain highly toxic compounds and their degradation products.

About the Authors

V. V. Zavialov
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Vasily Vladimirovich Zavyalov. Candidate of Chemical Sciences

Brigadirskii Lane 13, Moscow 105005



S. V. Kujelko
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Sergey Vladimirovich Kuzhelko. Senior Officer of the Department. Zavyalov V.V . Candidate of Chemical Sciences 

Brigadirskii Lane 13, Moscow 105005



N. V. Zavialova
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Natalya Vasilyevna Zavyalova. Leading Researcher. Doctor of Biological Sciences, Professor, Academician of the Academy of Military Sciences 

Brigadirskii Lane 13, Moscow 105005



V. A. Kovtun
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Viktor Aleksandrovich Kovtun. Head of the Centre. Candidate of Chemical Sciences, Associate Professor 

Brigadirskii Lane 13, Moscow 105005



V. I. Kholstov
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Viktor Ivanovich Kholstov. Member of Dissertation Council of the 27 Scientific Centre of the Ministry of Defence of the Russian Federation. Doctor of Chemical Sciences, Professor 

Brigadirskii Lane 13, Moscow 105005



Yu. F. Taranchenko
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Brigadirskii Lane 13, Moscow 105005



L. M. Slastilova
Federal State Budgetary Establishment «27 Scientific Centre» of the Ministry of Defence of the Russian Federation
Russian Federation

Lubov Mikhaylovna Slastilova. Junior Researcher 

Brigadirskii Lane 13, Moscow 105005



E. N. Efremenko
Faculty of Chemistry, The M.V. Lomonosov Moscow State University
Russian Federation

Elena Nikolaevna Efremenko. Head of Laboratory of Ecobiocatalysts of Chemical Enzymology Department, Doctor of Biological Sciences, Professor 

Lenin’s Hill, 1/3, Moscow, 119991



A. P. Sin’keliov
«Roshimzaschita» Corportion
Russian Federation

Alexandr Petrovich Sin’keliov. Deputy Head of the Separate Department. Candidate of Technical Sciences, Associate Professor 

Morshanskoe Avenue 19, Tambov City 392680



References

1. Ellison D. Hank. Handbook of Chemical and Biological Warfare Agents (Second ed.), CRC Press, 2008.

2. Khalil E. A technical overview on protective clothing against chemical hazards // AASCIT J. Chem. 2015. V. 2. P. 67–76. https://doi.org/10.6084/M9.FIGSHARE.1435935

3. Duncan S. Functional materials for CB protection against the asymmetric threat. Head/Soldier and Systems Protection Group Chemical and Biological Defence Section DRDC Suffield Defence R&D Canada. 2006. https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2006/cbip/duncan.pdf.

4. Future Soldier 2030 Initiative; US Army Natick Soldier Research, Development and Engineering Centre. 2009.

5. Sloter L. Overview of nanotechnology & nanomanufacturing within the Department of defense // American Vacuum Society International Symposium and Exhibition Baltimore, Maryland. USA. 2014. https://avs.org/AVS/files/d3/d388692a-70b1-472d-bec6-44df3b06126e.pdf.

6. Tomar S. Nanotechnology: the emerging field for future military applications. IDSA Monograph Series No. 48. 2015.

7. Snakes and ladders – Brazil’s COBRA future soldier programme. 2014. http://www.defence-andsecurity.com/features/featuresnakes-and-laddersbrazils-cobra-4483929/.

8. Patent RF № 2281798 (2006) (in Russian).

9. Patent RF № 281800 (2006) (in Russian).

10. US Patent № 6403653 (2002).

11. US Patent № 6410603 (2003).

12. Tsarev L. The development of new personal protective equipment for the US Land Forces // Foreign Military Review. 2013. № 8. P. 51–54 (in Russian).

13. Borisov А. The development of personal protective equipment of skin in the leading world countries // Foreign Military Review. 2016. № 9. P. 52–55 (in Russian).

14. Kalinichev B. The improvement of military equipage in the leading world countries // Foreign Military Review. 2007. № 5. P. 30–36 (in Russian).

15. Tripathi K., Singh V.V., Sathe M. et al. Activated carbon fabric: an adsorbent material for chemical protective clothing Nagesh// Defence Sci. J. 2018. V. 68. № 1. P. 83–90. https://doi.org/10.14429/dsj.68.11734

16. Medical aspects of Chemical Warfare / Eds. Tuorinsky S.D., Lenhart M.K. Walter Reed Army Medical Center. Washington. 2008.

17. Tyvek® and Tychem®. Protective Clothing. Technical Handbook. 2005.

18. US Patent № 8266726B2 (2007).

19. Catalog. O’CPU® Chemical Protective Undergarment. https://www.ouvry.com/en/produit/ocpuchemical-protective-undergarment/.

20. Army, marine corps, navy, air force; multiservice tactics, techniques, and procedures for nuclear, biological, and chemical (NBC) protection. FM 3-11.4 (FM 3-4). 2003.

21. Future Chemical/Biological Ensemble Ground Soldier System (FCBE-GSS) Technology Demonstration. Natick Soldier Research. Development & Engineering Centre. 2011. https://ru.scribd.com/document/168831050/FutureChemical-Biological-Ensemble-Ground-Soldier-SystemDTIC.

22. Arnol A. Undurchdringlich & unsichtbar «Schultz vor chemie und biologie visueller Schutz». Blücher Gruppe. Germany. 2010.

23. Saifutdinova I.F. The development of textile material with membrane layout for protective clothing… Cand. Diss. Techn. Sciences. Kazan, 2014 (in Russian).

24. Martini S. Clothing and protection in the Norwegian soldier modernisation program Normans. FFI. Principal Scientist. 2004.

25. Boopathi M., Singh B., Vijayaraghavan R. A review on NBC body protective clothing // Open Textile J. 2008. № 1. P. 1–8.

26. Boyé P. NBC Protective Suit Tompadef Model. AirPermeable NBC Protective Suit/Overall. Shalon Chemical Ind. Ltd http://www.shalon.co.il/WEB/8888/NSF/Web/1114/shalon%20prospect%20suit-2.pdf.

27. Li H., Yang W. Electrospinning technology in non-woven fabric manufacturing // Non-woven Fabrics / Ed. Han-Yong Jeon. IntechOpen, 2016. https://doi.org/10.5772/62200.

28. Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites // Composites Sci. Technology. 2003. V. 63. № 15. P. 2223–2253.

29. Mirjalili M., Zohoori S. Review for application of electrospinning and electrospun nanofibers technology in textile industry // J. Nanostructure in Chemistry. 2016. V. 6. № 3. P. 207–213.

30. Graham K., Gogins M. Incorporation of electrospun nanofibers into functional structures // INJ Summer. 2004. P. 21–27.

31. Walker J., Schreuder-Gibson H., Yeomans W. et al. Development of self-detoxifying materials for chemical protective clothing // Proc. Joint Service Scientific Conf on Chemical and Biological Defense Research. Nov 19–21, 2002.

32. Thilagavathi G., Raja A.S.M., Kannaian T. Nanotechnology and protective clothing for defence personnel // Defence Sci. J. 2008. V. 58. № 4. P. 451–459.

33. Štengl V., Št’astný M., Janoš P. et al. From the decomposition of chemical warfare agents to the decontamination of cytostatics // Industrial Engineering Chemistry Research. 2018. V. 57. № 6. P. 2114–2122.

34. Senić Ž, Bauk S., Vitorović-Todorović M. et al. Application of TiO2 nanoparticles for obtaining selfdecontaminating smart textiles // Sci. Techn. Rev. 2011. V. 61. № 3-4. P. 63–72.

35. Ravishankar Rai V., Jamuna Bai A. Nanoparticles and their potential application as antimicrobials // Science against microbial pathogens: communicating current research and technological advances / Ed. Méndez-Vilas A. FORMATEX. 2011. P. 197–209.

36. Gokarneshan N., Gopalakrishnan P.P., Jeyanthi B. Influence of nanofinishes on the antimicrobial properties of fabrics // ISRN Nanomaterials. 2012. Article ID193836. 8 p.

37. Rivero P.J., Urrutia A., Javier Goicoechea J., Aragua F.J. Nanomaterial’s for functional textiles and fibbers // Nanoscale Res. Lett. 2015. V. 10. № 1. P. 501. https://doi.org/10.1186/s11671-015-1195-6

38. Marchenko L.A., Polulyakhova N.N., Bokovikova T.N., Novoseletskaya O.V. Synthesis of inorganic sorbents on the basis of hydroxides and metals of their systems // Proceedings of higher educational institutions. North Caucasus region. Technical Sciences Series. 2005. № 1S (129). P. 54–62 (in Russian).

39. Arakelyan I.A. Chemical protective material on the basis of not carbon sorbents for the filtering protective clothes. Cand.Diss. Techn. Sciences. Kazan, 2009 (in Russian).

40. Somin V.A., Komarova L.F. Use of natural materials on the basis of bentonite clays and wood sawdust for the purification of water from metal compounds // Polzunov Bulletin. 2009. № 3. P. 356–360 (in Russian).

41. Ecologically safe biodegradation of the reactionary masses, formed during the destruction of organophosphorus toxic agents // Journal of D.I. Mendeleev Russian Chemistry Society. 2010. Т. LIV, № 4. P. 19–24 (in Russian).

42. Farkhutdinov R.Kh., Zhilyaev G.G. Several principles of the elaboration of personal protective equipment of skin. The protective filtering materials // Working clothes. 2006. № 4. P. 35 (in Russian).

43. Patent RF № 2388511 (2008) (in Russian).

44. Patent RF № 2445605 (2010) (in Russian).

45. Great Britain Patent № 1476762 (2003).

46. Patent RF № 2390592 (2008) (in Russian).

47. Patent RF № 2330134 (2008) (in Russian).

48. Patent RF № 2399700 (2010) (in Russian).

49. Patent RF № 2469867 (2012) (in Russian).

50. Patent RF № 2388608 (2010) (in Russian).

51. Patent RF № 2469867 (2012) (in Russian).

52. Patent RF № 2200603 (2003) (in Russian).

53. Farkhutdinov R.Kh. Innovative solutions in the field of PPE development. 2012. http://ntcpoisk.ru/innovacionnyeresheniya-v-oblasti-r.

54. Shay E.P., Komissarov A.N., Shay Yu.A. Production of perspective chemical protective materials by a press method: influence of components of printing paste on the extreme volume of the adsorptive space of active coal // Russian chemical magazine. 2010. V. 14. № 4. P. 116–119 (in Russian).

55. Lee Y.-R., Kim J., Ahn W.-S. Synthesis of metalorganic frameworks: a mini review // Korean J. Chem. Eng. 2013. V. 30. № 9. P. 1667–1680.

56. Soldier systems technology roadmap / Сapstone report and action plan/Supporting the future soldier supporting Canadian industry. Government of Canada. https://www.defenceandsecurity.ca/UserFiles/Uploads/publications/reports/files/document-10.pdf.

57. Bobbitt N.S., Mendonca M.L., Howarth A.J. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents // Chem. Soc. Rev. 2017. V. 46. P. 3357–3385.

58. Gutov O.V., Bury W., Gomez-Gualdron D.A. et al. A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities // Chemistry A European J. 2014. V. 20. P. 12389–12393.

59. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The chemistry and applications of metalorganic frameworks // Science. 2013. V. 341. № 6149. P. 1230444. https://doi.org/10.1126/science.1230444

60. Project final report № 228604 Nanoporous metalorganic frameworks for production (nano MOF). FP7-NMP-2008-LARGE-2 Project's coordinator: Dr. Wulf Grählert, Fraunhofer IWS. (01/06/2009 – 30/05/2013). https://cordis.europa.eu/docs/results/228604/final1-nanomof-finalreportfinal.pdf.

61. US Patent № 8647419B2 (2014).

62. Howarth A.J., Liu Y., Li P. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks // Nat. Rev. Mater. 2016. V. 1. P. 15018.

63. De Coste J.B., Peterson G.W. Metal-organic frameworks for air purification of toxic chemicals // Chem. Rev. 2014. V. 114. № 11. P. 5695–5727.

64. Planas N., Mondloch J.E., Tussupbayev S. et al. Defining the proton topology of the Zr6-based metal–organic framework NU-1000 // J. Phys. Lett. 2014. V. 5. P. 3716–3723.

65. López-Maya E., Montoro C., Rodríguez-Albelo L.M. et al. Textile/metal-organic-framework composites as selfdetoxifying filters for chemical-warfare agents // Angew. Chem. Int. Ed. Engl. 2015. V. 54. № 23. P. 6790–6794.

66. Moon S.-Y., Liu Y., Hupp J.T., Farha O.K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal–organic framework // Angew. Chem. Int. Ed. Engl. 2015. V. 54. № 23. P. 6795–6799.

67. Vemuri R.S., Armatis P.D., Bontha J.R. et al. An overview of detection and neutralization of chemical warfare agents using metal organic frameworks // J. Bioterror Biodef. 2015. V. 6. № 3. https://doi.org/10.4172/2157-2526.1000137

68. Mondloch J.E., Katz M.J., Isley III W.C. et al. Destruction of chemical warfare agents using metal–organic frameworks // Nature Materials. 2015. V. 14. P. 12–516.

69. Liang H., Yao A., Jiao X. et al. Fast and sustained degradation of chemical warfare agent simulants using flexible self-supported metal-organic framework filters // ACS Appl. Mater. Interfaces. 2018. V. 10. № 24. P. 20396–20403.

70. Liu Y., Howarth A.J., Hupp J.T., Farha O.K. Selective photooxidation of a mustard-gas simulant catalysed by a porphyritic metal–organic framework // Angew. Chem. Int. Ed., 2015. V. 54. № 31. P. 9001–9005. https://doi.org/10.1002/anie.201503741

71. Øien-Ødegaard S. Preparation, structure and reactivity of functionalized zirconium metal-organic frameworks. Dissert. Ph.D., Oslo. Norway. 2016. https://doi.org/10.1055/s-0034-1381039

72. Gil-San-Millan R., López-Maya E., Hall M. et al. Chemical warfare agents detoxification properties of zirconium metal−organic frameworks by synergistic incorporation of nucleophilic and basic sites // CS Appl. Mater. Interfaces. 2017. V. 9. № 28. P. 23967–23973.

73. US Patent 9623404B2 (2017).

74. Stassen I., Bueken B., Reinsch H. et al. Towards metal–organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection // Chem. Sci. 2016. V. 7. № 9. P. 5827–5832. https://doi.org/10.1039/C6SC00987E.

75. Silva P., Vilela S.M.F., Tome J.P.C., Paz F.A. A multifunctional metal–organic frameworks: from academia to industrial applications // Chem. Soc. Rev.2015. V. 44. P. 6774–6803.

76. Dias E.M., Petit C. Towards the use of metalorganic frameworks for water reuse. A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field // J. Mater. Chem. A. 2015. V. 3. № 45. P. 22484–22506.

77. Tomar S. Nanotechnology the emerging field for future military applications. IDSA 2015, Monograph Series № 48.

78. Czerwinska M. Military nanomaterial’s applications // Chemic. 2014. V. 68. P. 536–543.

79. Ahmeda T., Imdad S., Yaldram K. et al. Emerging nanotechnology-based methods for water purification: a review // Desalination Water Treatment. 2013. https://doi.org/10.1080/19443994.2013.801789

80. Alongi J., Tata J., Carosio F. et al. A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics // Polymers. 2015. V. 7. № 1. P. 47–68.

81. Bhuiyan M.A.R., Wang L., Shaid A. et al. Advances and applications of chemical protective clothing system // J. Industrial Textiles. 2019. V. 49. № 1. P. 97–138. https://doi.org/10.1177/1528083718779426

82. Ramaratnam K., Iyer S.K., Kinnan M.K. et al. Ultrahydrophobic textiles using nanoparticles: lotus approach // J. Engineered Fibers Fabrics. 2008. V. 3. № 4. https://doi.org/10.1177/155892500800300402

83. Qi K., Wang X., Xin J.H. Photocatalytic selfcleaning textiles based on nanocrystalline titanium dioxide // Textile Research J. 2011. V. 81. № 1. P. 101–110.

84. Ugur S., Merih Sarıısık M., Aktas H. The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics // Nanotechnology. 2010. V. 21. № 32. P. 325603. https://doi.org/10.1088/0957-4484/21/32/325603

85. Chen L. New generation of electrospun textiles for chemical and biological protection and air filtration. Massachusetts Institute of Technology. Massachusetts, 2009.

86. Navale G.R., Late D.J., Shinde S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi // JSM Nanotechnol Nanomed. 2015. V. 3. P. 1033.

87. Pei Z., Ma X., Ding P. et al. Study of a QCM dimethyl methylphosphonate sensor based on a ZnO modified nanowire-structured manganese dioxide film // Sensors (Basel). 2010. V. 10. № 9. P. 8275–8290.

88. Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacteral activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms // FEMS Microbial. Lett. 2008. V. 279. № 1. P. 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x

89. Smiechowicz E., Niecraszewicz B., Kulpinski P., Dzitko K. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica // Cellulose. 2018. V. 25. P. 3499–3517. https://doi.org/10.1007/s10570-018-1796-1

90. Gold K., Slay B., Knachstedt M., Gaharwar A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles // Adv. Therap. 2018. V. 1. № 3. P. 1100033. https://doi.org/10.1002/adtp.201700033

91. Xie Y, He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni // Appl. Environ. Microbiol. 2011. V. 77. № 7. P. 2325–2331. https://doi.org/10.1128/AEM.02149-10

92. US Patent 7534453B1 (2009).

93. Scherbakov A.B., Zholobak N.M., Ivanov V.K. et al. Nanomaterials on the basis of cerium dioxide; properties and the prospects of use in biology and medicine // Biotechnology. 2011. V. 4. № 1. P. 9–28 (in Russian).

94. Ravikumar S., Gokulakrishnan R. The inhibitory effect of metal oxide nanoparticles against poultry pathogens // Int. J. Pharm. Sci. Drug Res. 2012. V. 4. P. 157–159.

95. Gordon W.O. Metal oxide nanoparticles: optical properties and interaction with chemical warfare agent simulants. Dis. Ph.D. Blacksburg, Virginia, USA. 2006.

96. Khanna V.K. Nanoparticle-based sensors // Defence Sci. J. 2008. V. 58. № 5. P. 608–616.

97. Tengl V., Bakardjieva S., Murafa N., Opluśtil F. Zirconium doped titania: destruction of warfare agents and photocatalytic degradation of Orange 2 dye // Open Process Chem. J. 2008. V. 1. P. 1–7.

98. Doskocz N., Załęska-Radziwiłł M. Effects of zirconium oxide nanoparticles on bacterial growth // PhD Interdisciplinary J. 2015. P. 161–166.

99. Kim S., Ying W.B., Jung H. et al. Zirconium hydroxide-coated nanofiber mats for nerve agent decontamination // Chem. Asian J. 2017. V. 12. № 6. P. 698– 705. https://doi.org/10.1002/asia.201601729.

100. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V. et al. Biological effect of zirconium dioxide based nanoparticles // Nanosystems: Physics, Chemistry, Mathematics. 2017. V. 8. № 3. P. 391–396. https://doi.org/10.17586/2220-8054-2017-8-3-391-396

101. Bakardjieva S., Šubrt J., Štengl V. et al. Magnesium oxide nanoparticles as destructive sorbent for toxic agents // Microscopy Microanalysis. 2004. V. 10. P. 476–477.

102. Sundrarajan M., Suresh J., Gandhi R.R. A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature // Digest J. Nanomaterials Biostructures. 2012. V. 7. № 3. P. 983–989.

103. Tang Z.-X., Lv B.-F. MgO nanoparticles as antibacterial agent: preparation and activity // Brazilian J. Chem. Engineering. 2014. V. 31. № 3. P. 591–601.

104. Behera S.S., Patra J.K., Pramanik K. et al. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles // World J. Nano Sci. Engineering. 2012. V. 2. P. 196–200.

105. Zeynalov O.A., Kombarova S.P., Bagrov D.V. et al. On the influence of metal oxides nanoparticles on physiology of live organisms // Reviews on a clinical pharmacology and medicinal therapy. 2016. V. 14. № 3. P. 24–33 (in Russian).

106. Yang Y.C., Baker J.A., Ward J.R. Decontamination of chemical warfare agents // J. Chem. Rev. 1992. V. 92. P. 1729–1743.

107. Ramaseshan R., Sundarrajan S., Liu Y. et al. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants // J. Nanotechnology. 2006. V. 17. P. 2947–2953.

108. Lee Y., Chadha S., Riecker A. et al. Dynamic nanocomposite self-deactivating fabrics for the individual and collective protection. DTIС OAI Technical Report № ADA481575. Waltham, MA: Foster-Miller Inc., 2006. P. 9.

109. Efremenko E.N., Varfolomeyev S.D. Enzymes of destruction of organophosphorous neurotoxins // The Success of Biological Chemistry. 2004. V. 44. P. 307–340 (in Russian).

110. Efremenko E.N., Sergeeva V.S. Organophosphorus hydrolase – the enzyme catalyzing degradation of phosphoruscontaining toxic agents and pesticides // Proceedings of the Academy of Sciences. Chemistry Series. 2001. V. 10. P. 1743– 1749 (in Russian).

111. Le Jeune K.E., Dravis B.C., Yang F. et al. Fighting nerve agent chemical weapons with enzyme technology // J. Annals. N.Y Acad. Science. 1998. V. 864. Р. 153–170.

112. Lyagin I, Efremenko E. Theoretical evaluation of suspected enzymatic hydrolysis of novichok agents // Catalysis Commun. 2019. V. 120. P. 91–94. https://doi.org/10.1016/j.catcom.2018.11.019

113. Lyagin I.V., Andrianova M.S., Efremenko E.N. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase // Appl. Microbiol. Biotechnol. 2016. V. 100. № 13. P. 5829–5838. https://doi.org/10.1007/s00253-016-7407-x

114. Le Jeune K.E., Wild J.R., Russel A.J. Nerve agents degraded by enzymatic foams // Nature. 1998. V. 395. № 6697. Р. 27–28.

115. Le Jeune K.E., Russell A.J. Biocatalytic nerve agent detoxification in fire fighting foams // J. Biotechnol. Bioeng. 1999. V. 62. № 6. P. 659–665.

116. Efremenko E.N., Lyagin I.V., Klyachko N.L. et al. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins // J. Control. Release. 2017. V. 247. P. 175–181.

117. Kolakowski J.E., De Frank J.J., Harvey S.P. et al. Enzymatic hydrolysis of the chemical warfare agent Vx and its neurotoxic analogues by organophosphorous hydrolase // J. Biocatal. Biotrans. 1997. V. 15. P. 297–312.

118. US Patent № 6642037 (2003).

119. Le Jeune K.E., Mesiano A.J., Bover S.B. et al. Dramatically stabilized phosphotriesterase- polimersfor nerve agent degradation // J. Biotechn. Bioengin. 1997. V. 54. P. 105–114.

120. Efremenko E., Lyagin I., Gudkov D. et al. Immobilized biocatalysts for detoxification of neurotoxic organophosphorous compounds // J. Biocatal. Biotransfor. 2007. V 25. № 2-4. P. 359–364.

121. Caldwell S.R., Raushel F.M. Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase from Pseudomonas diminuta // J. Appl. Biochem. Biotechnol. 1991. V. 31. P. 59–72.

122. Caldwell S.R., Raushel F.M. Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta // J. Biotechnol. Bioengin. 1991. V. 37. P. 103–109.

123. Gill I., Ballesteros A. Degradation of organophosphorous nerve agents by enzyme-polymer nanocomposites: efficient biocatalytic materials for personal protection and large-scale detoxification // J. Biotechn. Bioengin., 2000. V. 70. № 4. P. 400–410.

124. Patent WO 2004/112482 (2004).

125. Patent RF № 2330717 (2008) (in Russian).

126. McDaniel C.S., McDaniel J., Wales M.E., Wild J.R. Enzyme-based additives for paints and coatings // Progress in Organic Coatings. 2006. V. 55. № 2. P. 182–188. https://doi.org/10.1016/j.porgcoat.2005.09.013

127. Efremenko E., Peregudov A., Kildeeva N., et al. New enzymatic immobilized biocatalysts for detoxification of organophosphorus compounds // Biocatal. Biotransform. 2005. V. 23. № 2. P. 103–108.

128. Votchintseva Yu. A. Efremenko E.N., Aliyev T.K., Varfolomeyev S.D. His6-organophosphate hydrolase properties // Biochemistry. 2006. V. 76. № 2. P. 216–222 (in Russian).

129. Gudkov D.A., Votchitseva Yu.A. Efremenko E.N. The hydrolysis of a paraoxon catalyzed by the His 6-organophosphorus hydrolase // Bulletin of the Moscow State University. Ser. 2. Chemistry. 2006. V. 47. № 1. P. 15–20 (in Russian).

130. Lyagin I.V., Efremenko E.N. Biomolecular engineering of biocatalysts hydrolyzing neurotoxic organophosphates // Biochimie. 2018. V. 144. P. 115–121. https://doi.org/10.1016/j.biochi.2017.10.023

131. Efremenko E.N., Lyagin I.V. et al. Rupture of S-R in phosphonates under the influence of enzymatic biocatalysts // Theoretical and applied ecology. 2015. № 3. P. 47–54 (in Russian).

132. Efremenko E.N., Lyagin I.V., Zavyalov V.V. et al. The enzymes in the technology of destruction of organophosphorus substances // Russian chemical magazine. 2007. LI, № 2. P. 24–29 (in Russian).

133. Efremenko E., Votchitseva Y., Plieva F. et al. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography // Appl. Microb. Biotech. 2006. V. 70. № 5. P. 558–563.

134. Patent RF № 2615176 (2017) (in Russian).

135. Efremenko E.N., Lyagin I.V. Gudkov D.A. et al. The immobilized biocatalysts on the basis of His 6-organophosphate hydrolase in the processes of decomposition of organophosphorus toxic agents // Theoretical and Applies Ecology. 2011. № 4. V. 26–31 (in Russian).

136. Filimonov I.V., Yankovskaya A.A., Kuzhelko S.V. et al. Researches in the sphere of perspective use of chemical and biological and medical biocatalytic technologies for the benefit of Armed Forces // Journal of NBC protection Corps. 2018. V. 2. № 2. P. 18–50 (in Russian).

137. Antipov V.B., Zavyalova N.V., Efremenko E.N. et al. The prospects of use of nanotechnologies for the benefit of Armed Forces // The Report of the Academy of Military Sciences. Academy of Military Sciences, Volga Branch. Military institute of internal troops of the Ministry of Internal Affairs of Russia. 2016. № 4 (68). P. 82–89 (in Russian).

138. Efremenko E.N., Lyagin I.V., Senko O.V. et al. The immobilized heterogeneous biocatalysts for decomposition of S-R connection in degradation products of organophosphorus toxic agents // Bulletin of the Peoples’ Friendship University of Russia. Series Ecology. 2011. № 1. P. 61–66 (in Russian).

139. Prokop Z., Koudelakova T., Bidmanova S., Damborský J. Enzymes for detection and decontamination of chemical warfare agents // RSC Catalysis Series, Chapter 18, 2018, P. 539–565. https://doi.org/10.1039/9781788010450-00539

140. Masson P., Rochu D. Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings // Acta Naturae. 2009. № 1. P. 68–78.


Review

For citations:


Zavialov V.V., Kujelko S.V., Zavialova N.V., Kovtun V.A., Kholstov V.I., Taranchenko Yu.F., Slastilova L.M., Efremenko E.N., Sin’keliov A.P. Modern Directions of Creating New Protective Materials and Tissues for Means of Individual and Collective Protection against Toxic Chemicals and Pathogenic Microorganisms. Journal of NBC Protection Corps. 2019;3(3):217-254. (In Russ.) https://doi.org/10.35825/2587-5728-2019-3-3-217-254. EDN: deojvf

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)