Preview

Journal of NBC Protection Corps

Advanced search

Neuro- and Cardiotoxins from Sea Anemones: Structure, Function and Potential of Application in Research and Medical Practice

https://doi.org/10.35825/2587-5728-2019-3-2-117-136

EDN: qbguzu

Abstract

Sea anemones are well-spread everywhere in the World Ocean and represent the most ancient active poisonous organisms. Their main instrument of attack on other animals are the nematocysts – stinging organelles with the curtailed hollow thread with poisonous edge on the end. In order to attract their potential victims, they use fluorescent proteins. These proteins became a separate object of research as genetically coded markers for the observation of activity of promotors of genes. The poisonous secret of sea anemones is characterized by the presence of maximum number of peptides of various structural classes and spatial structures among the studied land and marine organisms (bees, spiders, scorpions, snakes ect.). This fact complicates the identification of sea anemones' secret and its differentiation from poisons of animals of other taxons, if the concrete source of its origin is unknown. The toxicity of some biologically active sea anemone peptides (RpI, RpIII) at intravenous administration to experimental animals is comparable with that of the most well-known and dangerous representatives of natural toxins with the similar mechanism of action (an alpha-hemolysine and tetrodotoxin), or chemical warfare agents, such as sarin and hydrogen cyanide. Based on their toxic effect, the biologically active sea anemone peptides generally can be classified as neurotoxins due to their impact on the functioning of sodium channels in the cells of the nervous system of animals. Cardiotoxic effect of sea anemone secret is caused by the specificity of interaction between its separate neurotoxins and one of the sub-types of sodium channels of muscle cells, characteristic for heart tissues. The main ways of identification of sea anemone neurotoxins in samples (for example, during the investigation of biological crimes) can be sequence by Edman`s method or tandem mass spectrometry (the analysis of fragments of toxin molecule for the establishment of its structure). Further study on the mechanisms of interaction between the sea anemone neurotoxins and the ion channels of the cells of nervous and muscular systems may result in the creation of medicines for treatment of channelopathy, as well as pluripotential antidotes, blocking the toxins, that influence on sodium channels.

About the Authors

R. S. Kalina
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Rimma Sergeevna Kalina. Junior Researcher 

Prospect 100-let Vladivostoky 159, Vladivostok 690022



M. M. Monastyrnaya
G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Margarita Michailovna Monastyrnaya. Leading Researcher, Doctor of Chemical Sciences

Prospect 100-let Vladivostoky 159, Vladivostok 690022



References

1. Rentzsch F., Layden M., Manuel M. The cellular and molecular basis of cnidarian neurogenesis // Wiley Interdiscip. Rev. Dev. Biol. 2017. V. 6, № 1. P. e257.

2. Frazão B., Vasconcelos V., Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: An overview // Mar. Drugs. 2012. V. 10, № 12. P. 1812–1851.

3. Prentis P.J., Pavasovic A., Norton R.S. Sea anemones: Quiet achievers in the field of peptide toxins // Toxins (Basel). 2018. V. 10, № 1.

4. Busengdal H., Rentzsch F. Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis // Dev. Biol. 2017. V. 431, № 1. P. 59–68.

5. Nüchter T., Benoit M., Engel U. et al. Nanosecondscale kinetics of nematocyst discharge // Curr. Biol. 2006. V. 16, № 9. P. R316–R318.

6. Eash-loucks W.E., Fautin D.G. Taxonomy and distribution of sea anemones (Cnidaria: Actiniaria and Corallimorpharia) from deep water of the northeastern Pacific // Zootaxa. 2012. V. 3375, № 1. P. 1.

7. Amado E.M., Vidolin D., Freire C.A. et al. Distinct patterns of water and osmolyte control between intertidal (Bunodosoma caissarum) and subtidal (Anemonia sargassensis) sea anemones // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011. V. 158, № 4. P. 542–551.

8. Fautin D.G., Malarky L., Soberón J. Latitudinal diversity of sea anemones (Cnidaria: Actiniaria) // Biol. Bull. 2013. V. 224, № 2. P. 89–98.

9. Tkachenko K.S. Competetive exclusion of common scleractinians by solitary anemone Anemonia manjano (Carlgren) on coral reefs of the central Vietnam // Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2015. V. 17, № 4. P. 956–961 (in Russian).

10. Ross D.M. The symbiosis between the «cloak anemone» Adamsia carciniopados (Otto) (AnthozoaActiniaria) and Pagurus prideauxi Leach (DecapodaAnomura) // Bolletino di Zool. 1984. V. 51, № 3–4. P. 413–421.

11. Schnytzer Y., Giman Y., Karplus I. et al. Boxer crabs induce asexual reproduction of their associated sea anemones by splitting and intraspecific theft // Peer J. 2017. V. 5. P. e2954.

12. Buston P.M., García M.B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula // J. Fish Biol. 2007. V. 70, № 6. P. 1710–1719.

13. Litsios G., Sims C.A., Wüest R.O. et al. Mutualism with sea anemones triggered the adaptive radiation of clownfishes // BMC Evol. Biol. 2012. V. 12. P. 212.

14. Mishin A.S., Belousov V.V., Solntsev K.M. et al. Novel uses of fluorescent proteins // Curr. Opin. Chem. Biol. 2015. V. 27. P. 1–9.

15. Hutter H. Fluorescent protein methods: Strategies and applications // Methods in cell biology. 2012. V. 107. P. 67–92.

16. Chalfie M., Tu Y., Euskirchen G. et al. Green fluorescent protein as a marker for gene expression // Science. 1994. V. 263, № 5148. P. 802–805.

17. Chang H.-Y., Ko T.P., Chang Y.C. et al. Crystal structure of the blue fluorescent protein with a Leu-LeuGly tripeptide chromophore derived from the purple chromoprotein of Stichodactyla haddoni // Int. J. Biol. Macromol. 2019. V. 130. P. 675–684.

18. Shen Y., Dana H., Abdelfattah A.S. et al. A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578 // BMC Biol. 2018. V. 16, № 1. P. 9.

19. Shaner N.C., Campbell R.E., Steinbach P.A. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. Red fluorescent protein // Nat. Biotechnol. 2004. V. 22, № 12. P. 1567–1572.

20. Lukyanov K.A., Fradkov A.F., Gurskaya N.G. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog // J. Biol. Chem. 2000. V. 275, № 34. P. 25879–25882.

21. Stiel A.C., Stiel A.C., Andresen M. et al. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy // Biophys. J. 2008. V. 95, № 6. P. 2989–2997.

22. Mizuno M. Envenomation by cnidarians and renal injuries nephrotoxic effects of venoms from sea anemones from Japan. Springer, Dordrecht, 2017. P. 1–13.

23. Ravindran V.S., Kannan L., Venkateshvaran K. Biological activity of sea anemone proteins: I. Toxicity and histopathology // Indian J. Exp. Biol. 2010. V. 48, № 12. P. 1225–1232.

24. Mizuno M., Nozaki M., Morine N. et al. A protein toxin from the sea anemone Phyllodiscus semoni targets the kidney and causes a severe renal injury with predominant glomerular endothelial damage // Am. J. Pathol. 2007. V. 171, № 2. P. 402–414.

25. Lam J., Cheng Y.W., Chen W.U. et al. A detailed observation of the ejection and retraction of defense tissue acontia in sea anemone (Exaiptasia pallida) // Peer J. 2017. V. 5. P. e2996.

26. Macrander J., Brugler M.R., Daly M. A RNAseq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps // BMC Genomics. 2015. V. 16, № 1. P. 221.

27. Macrander J., Broe M., Daly M. Tissue-specific venom composition and differential gene expression in sea anemones // Genome Biol. Evol. 2016. V. 8, № 8. P. 2358–2375.

28. Klyshko E.V., Il'ina A.P., Monastyrnaya M.M. et al. Biologically active polypeptides and hydrolytic enzymes in sea anemones of northern temperate waters // Russ. J. Mar. Biol. 2003. V. 29, № 3. P. 161–166.

29. Rachamim T., Morgenstern D., Aharonovich D. et al. The dynamically evolving nematocyst content of an Anthozoan, a Scyphozoan, and a Hydrozoan // Mol. Biol. Evol. 2015. V. 32, № 3. P. 740–753.

30. Hanck D.A., Sheets M.F. Site-3 toxins and cardiac sodium channels // Toxicon. 2007. V. 49, № 2. P. 181–193.

31. Wanke E., Zaharenko A.J., Redaelli E. et al. Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms // Toxicon. 2009. V. 54, № 8. P. 1102–1111.

32. Schweitz H., Bidard J.N., Frelin C. et al. Purification, sequence, and pharmacological properties of sea anemone toxins from Radianthus paumotensis. A new class of sea anemone toxins acting on the sodium channel // Biochemistry. 1985. V. 24, № 14. P. 3554–3561.

33. Bane V., Lehane M., Dikshit M. et al. Tetrodotoxin: chemistry, toxicity, source, distribution and detection // Toxins (Basel). 2014. V. 6, № 2. P. 693–755.

34. Anderluh G., Macek P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria) // Toxicon. 2002. V. 40, № 2. P. 111–124.

35. Gill D.M. Bacterial toxins: a table of lethal amounts // Microbiol. Rev. 1982. V. 46, № 1. P. 86–94.

36. Aleksandrov V.N., Emelyanov V.I. Chemical warfare agents. M., Voenisdat, 1990. 271 p. (In Russian).

37. Danneels E.L., Van Vaerenbergh M., Debyser G. et al. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach // Toxins (Basel). 2015. V. 7, № 11. P. 4468–4483.

38. Barkan N.P., Bayazit M.B., Demiralp O.D. Proteomic characterization of the venom of five Bombus (Thoracobombus) species // Toxins (Basel). 2017. V. 9, № 11.

39. Saez N.J., Senff S., Jensen J.E. et al. Spider-venom peptides as therapeutics // Toxins (Basel). 2010. V. 2, № 12. P. 2851–2871.

40. Mikov A. N., Kozlov S. A. Structural features of cysteine-stabilized polypeptides from sea anemones venoms // Bioorg. Chem. 2015. V. 41, № 5. P. 511–523 (in Russian).

41. Gladkikh I., Monastyrnaya M., Zelepuga E. et al. New Kunitz-type HCRG polypeptides from the sea anemone Heteractis crispa // Mar. Drugs. 2015. V. 13, № 10. P. 6038–6063.

42. Valle A., Alvarado-Mesén J., Lanio M.E. et al. The multigene families of actinoporins (part I): Isoforms and genetic structure // Toxicon. 2015. V. 103. P. 176–187.

43. Madio B., Undheim E.A.B., King G.F. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus // J. Proteomics. 2017. V. 166. P. 83–92.

44. Deuis J.R., Mueller A., Israel M.R. et al. The pharmacology of voltage-gated sodium channel activators // Neuropharmacology. 2017. V. 127. P. 87–108.

45. Norton R.S., Chandy K.G. Venom-derived peptide inhibitors of voltage-gated potassium channels // Neuropharmacology. 2017. V. 127. P. 124–138.

46. Gamal El-Din T.M., Lenaeus M.J., Catterall W.A. Structural and functional analysis of sodium channels viewed from an evolutionary perspective // Handbook of experimental pharmacology. 2017. V. 246. P. 53–72.

47. Clairfeuille T., Xu H., Koth C.M. et al. Voltage-gated sodium channels viewed through a structural biology lens // Curr. Opin. Struct. Biol. 2017. V. 45. P. 74–84.

48. Israel M.R., Tay B., Deuis J.R. et al. Sodium channels and venom peptide pharmacology // Advances in pharmacology. 2017. V. 79. P. 67–116.

49. Wu Y., Ma H., Zhang F. et al. Selective voltagegated sodium channel peptide toxins from animal venom: Pharmacological probes and analgesic drug development // ACS Chem. Neurosci. 2018. V. 9, № 2. P. 187–197.

50. Carnevale V., Klein M.L. Small molecule modulation of voltage gated sodium channels // Curr. Opin. Struct. Biol. 2017. V. 43. P. 156–162.

51. Chen R., Chung S.-H. Mechanism of tetrodotoxin block and resistance in sodium channels // Biochem. Biophys. Res. Commun. 2014. V. 446, № 1. P. 370–374.

52. de Lera Ruiz M., Kraus R.L. Voltage-gated sodium channels: Structure, function, pharmacology, and clinical indications // J. Med. Chem. 2015. V. 58, № 18. P. 7093–7118.

53. Wang J., Ou S., Wang Y. Distribution and function of voltage-gated sodium channels in the nervous system // Channels. 2017. V. 11, № 6. P. 534–554.

54. Jarecki B.W., Piekarz A.D., Jackson J.O. et al. Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents // J. Clin. Invest. 2010. V. 120, № 1. P. 369–378.

55. Thomas A.M., Atkinson T.J. Old friends with new faces: Are sodium channel blockers the future of adjunct pain medication management? // J. Pain. 2018. V. 19, № 1. P. 1–9.

56. Wunderer G., Machleidt W., Wachter E. Toxin II from Anemonia sulcata the first sequence of a coelenterate toxin // Hoppe. Seylers. Z. Physiol. Chem. 1976. V. 357, № 2. P. 239–240.

57. Ishida M., Yjkoama A., Shimakura К. et al. Halkurin, a polypeptide toxin in the sea anemone Halkurias sp., with a structural resemblance to tipe 1 and 2 toxins // Toxicon. 1997. V. 35. P. 537–544.

58. Messerli S.M., Greenberg R.M. Cnidarian toxins acting on voltage-gated ion channels // Mar. Drugs. 2006. V. 4, № 3. P. 70.

59. Martinez G., Kopeyan C. Toxin III from Anemonia sulcata: primary structure // FEBS Lett. 1977. V. 84, № 2. P. 247–252.

60. Spagnuolo A., Zanetti L., Cariello L. et al. Isolation and characterization of two genes encoding calitoxins, neurotoxic peptides from Calliactis parasitica (Cnidaria) // Gene. 1994. V. 138, № 1–2. P. 187–191.

61. Pallaghy P.K., Scanlon M.J., Monks S.A. et al. Threedimensional structure in solution of the polypeptide cardiac stimulant anthopleurin-A // Biochemistry. 1995. V. 34, № 11. P. 3782–3794.

62. Monks S.A., Pallaghy P.K., Scanlon M.J. et al. Solution structure of the cardiostimulant polypeptide anthopleurin-B and comparison with anthopleurin-A // Structure. 1995. V. 3, № 8. P. 791–803.

63. Seibert A.L., Liu J., Hanck D.A. et al. Arg-14 loop of site 3 anemone toxins: Effects of glycine replacement on toxin affinity // Biochemistry. 2003. V. 42, № 49. P. 14515–14521.

64. Moran Y., Gordon D., Gurevitz M. Sea anemone toxins affecting voltage-gated sodium channels – molecular and evolutionary features // Toxicon. 2009. V. 54, № 8. P. 1089–1101.

65. Moran Y., Cohen L., Kahn R. et al. Expression and mutagenesis of the sea anemone toxin Av2 reveals key amino acid residues important for activity on voltagegated sodium channels // Biochemistry. 2006. V. 45, № 29. P. 8864–8873.

66. Kalina R., Gladkikh I., Dmitrenok P. et al. New APETx-like peptides from sea anemone Heteractis crispa modulate ASIC1a channels // Peptides. 2018. V. 104.


Review

For citations:


Kalina R.S., Monastyrnaya M.M. Neuro- and Cardiotoxins from Sea Anemones: Structure, Function and Potential of Application in Research and Medical Practice. Journal of NBC Protection Corps. 2019;3(2):117-136. (In Russ.) https://doi.org/10.35825/2587-5728-2019-3-2-117-136. EDN: qbguzu

Views: 497


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)