Preview

Journal of NBC Protection Corps

Advanced search

Methods for identification of causative agents of dangerous and particularly dangerous infections based on the analysis of nucleic acids

https://doi.org/10.35825/2587-5728-2018-2-4-22-35

EDN: yoqcsl

Abstract

One of the main tasks of the NBC Protection Troops is accurate and rapid identification of infectious disease causative agents in case of establishing the fact of biological contamination. Different methods based on the analysis of nucleic acids are most preferred for this purpose. Most of them are based on DNA amplification by polymerase chain reaction (PCR). The result is detected by electrophoretic separation of amplification products, as well as by registration of endpoint fluorescent signal (FLASH modification) or in real time (PCR-RT). Other methods of DNA amplification, such as ligase chain reaction (LCR) and isothermal amplification, are also applicable in practice. The article also describes some identification methods based on nucleic acid sequencing: multilocus sequence typing (MLST) method, sequencing of individual genes and complete genome sequencing. It is concluded that the choice of identification method should be based on the goals and objectives, laboratory facilities, availability of trained personnel and funding levels. Despite the fact that the most informative are methods based on sequencing nucleotide sequences, their implementation in the field is difficult so far due to technological requirements.

About the Authors

Y. A. Kibirev
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation (Kirov)
Russian Federation

Kibirev Yaroslav Aleksandrovich. Chief of the Scientific and Research Department. Candidate of Biological Sciences

Oktyabrsky Avenue 119, Kirov 610000



S. E. Burlachuk
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation (Kirov)
Russian Federation

Burlachuk Sergey Gennadyevich. Researcher of the Scientific and Research Department

Oktyabrsky Avenue 119, Kirov 610000



A. S. Grudcina
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation (Kirov)
Russian Federation

Grudcina Anna Stanislavovna. Researcher of the Scientific and Research Department. Candidate of Biological Sciences

Oktyabrsky Avenue 119, Kirov 610000



D. O. Sityakov
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation (Kirov)
Russian Federation

Sityakov Dmitry Olegovich. Junior researcher of the Scientific and Research Department

Oktyabrsky Avenue 119, Kirov 610000



S. G. Isupov
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation (Kirov)
Russian Federation

Isupov Sergey Gennadyevich. Deputy Chief of the Scientific and Research Department. Candidate of Medical Sciences

Oktyabrsky Avenue 119, Kirov 610000



V. I. Drobkov
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation (Kirov)
Russian Federation

Drobkov Vladimir Ivanovich. Researcher of the Scientific and Research Department. Candidate of Medical Sciences 

Oktyabrsky Avenue 119, Kirov 610000



References

1. Pavlov D.L., Onuchina N.V., Kuznetsovskiy A.V., Fomenkov O.O., Tumanov A.S. The results of the research of biological and genetic properties of the anthrax strains isolates during the epizootic 2016 in Yamal-Nenets autonomous district // Journal of NBC Protection Corps. 2017. V 1. № 1. P. 23–32 (in Russian).

2. Gluhov A.I., Gordeyev S.A., Altshuler M.L., Zikov I.E. et al. Using of nest PCR for plague causative agent detection // Clinical laboratory diagnostic. 2003. № 7. P. 47–50 (in Russian).

3. Arnold T., Neubauer H., Nikolaou K. et al. Identification of Yersinia enterocolitica in minced meat: a comparative analysis of API 20E, Yersinia identification kit and a 16S rRNA-based PCR method // J. Vet. Med. B. Infect. Dis. Vet. Public Health. 2004. V. 51. №. 1. P. 23–27.

4. Higuchi R., Dollinger G., Walsh P.S., Griffith R. Simultaneous amplification and detection of specific DNA sequences // Biotechnology. 1992. V. 10. № 4. P. 413–417.

5. Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real time monitoring of DNA amplification reactions // Biotechnology. 1993. V. 11. № 9. P. 1026–1030.

6. Dang C, Jayasena S.D. Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PСR // J. Mol. Biol. 1996. V. 264. P. 268– 278.

7. Horton R.M., Hoppe B.L., Conti-Tronconi B.M. AmpliGrease: «hot start» PCR using petroleum jelly // Biotechniques. 1994. V. 16. P. 42–43.

8. Kleppe K., Ohtsuka E., Kleppe R. et al. Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases // J. Mol. Biol. 1971. V. 56. № 2. P. 341–361.

9. Her M., Kang S.I., Kim J.W. et al. A genetic comparison of Brucella abortus isolates from animals and humans by using an MLVA assay // J. Microbiol. Biotechnol. 2010. V. 20. № 12. P. 1750–1755.

10. Kingston J.J., Tuteja U., Kapil M. et al. Genotyping of Indian Yersinia pestis strains by MLVA and repetitive DNA sequence based PCRs // Antonie van Leeuwenhoek. 2009. V. 96. № 3. P. 303–313.

11. Rebrikov D.V., Samatov G.A., Trofimov D.U. et al. Real-time PCR. Moscow: BINOM. Knowledge Lab, 2011. 223 p. (in Russian).

12. Khatami F., Heidari M., Khatami M. Rapid detection of Escherihia coli O157: H7 by fluorescent amplification-based specific hybridization (Flash) PCR // Iranian Red Crescent Med. J. 2012. V. 14. № 9. P. 594–598.

13. Gibriel A.A., Adel O. Advances in ligase chain reaction and ligation-based amplifications for genotyping assay: detection and applications // Mutation Research/ Reviews in Mutation Research. 2017. V. 773. P. 66–90.

14. Vincent M., Xu Y., Kong H. Helicase-dependent isothermal DNA amplification // EMBO Reports. 2004. V. 5. № 8. P. 795–800.

15. Walker G.T., Fraiser M.S., Schram J.L. et al. Strand displacement amplification – an isothermal, in vitro DNA amplification technique // Nucleic Acids Res. 1992. V. 20, № 7. P. 1691–1696.

16. Dean F.B., Hosono S., Fang L. et al. Comprehensive human genome amplification using multiple displacement amplification // Proc. Natl Acad. Sci. USA. 2002. V. 99. № 8. P. 5261–5266.

17. Schweitzer B., Kingsmore S. Combining nucleic acid amplification and detection // Curr. Opin. Biotechnol. 2001. V. 12. № 1. P. 21–27.

18. Wu L., Liu Q., Wu Z., Lu Z. Detection of HIV cDNA point mutations with rolling-circle amplification arrays // Molecules. 2010. V. 15. № 2. P. 619–626. doi: 10.3390/molecules15020619.

19. Maciejewska A., Jakubowska J., Pawlowski R. Whole genome amplification of degraded and nondegraded DNA for forensic purposes // International Journal of Legal Medicine. 2013. V. 127. № 2. P. 309–319.

20. Zong C., Lu S., Chapman A.R., Xie X.S. Genomewide detection of single-nucleotide and copy-number variations of a single human cell // Science. 2012. V. 338. № 6114. P. 1622–1626. doi: 10.1126/science.1229164.

21. Fang R., Li X., Hu L. et al. Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens // J. Clin. Microbiol. 2009. V. 47. № 3. P. 845–847. doi: 10.1128/JCM.01528-08.

22. Liu W., Dong D., Yang Z. et al. Polymerase Spiral Reaction (PSR). A novel isothermal nucleic acid amplification method // Sci. Rep. 2015. V. 29. № 5. P. 12723. doi: 10.1038/srep12723.

23. Fischbach J., Frohme M., Glokler J. Hingeinitiated Primer-dependent Amplification of nucleic acids (HIP) – a new versatile isothermal amplification method // Sci. Rep. 2017 V. 7. № 1. P. 7683.

24. Aonuma H., Badolo A., Okado K., Kanuka H. Detection of mutation by allele-specific loop-mediated isothermal amplification (AS-LAMP) // Methods Mol. Biol. 2013. V. 1039. P. 121–127. doi: 10.1007/978-1-62703-535-4_10.

25. Fukuta S., Mizukami Y., Ishida A., Kanbe M. Development of loop-mediated isothermal amplification (LAMP)-based SNP markers for shelf-life in melon (Cucumis melo L.) // J. Appl. Genet. 2006. V. 47. № 4. P. 303–308.

26. Itonaga M., Matsuzaki I., Warigaya K. Novel methodology for rapid detection of KRAS mutation using PNA-LNA mediated loop-mediated isothermal amplification / et al. // PLоS One. 2016. V. 11. № 3. P. e0151654. doi: 10.1371/journal.pone.0151654.

27. Zhu Q., Gao Y., Yu B. et al. Self-priming compartmentalization digital LAMP for point-of-care // Lab Chip. 2012. V. 12. № 22. P. 4755–4763.

28. Blainey P.C., Quake S.R. Digital MDA for enumeration of total nucleic acid contamination // Nucleic Acids Res. 2011. V. 39. № 4. P. e19.

29. Sidore A.M., Lan F., Lim S.W., Abate A.R. Enhanced sequencing coverage with digital droplet multiple displacement amplification // Nucleic Acids Res. 2016. V. 44. № 7. P. e66. doi: 10.1093/nar/gkv1493.

30. Khorosheva E.M., Karymov M.A., Selck D.A., Ismagilov R.F. Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP // Nucleic Acids Res. 2016. V. 44, № 2. P. e10. doi: 10.1093/nar/gkv877.

31. Player A.N., Shen L.P., Kenny D. et al. Singlecopy gene detection using branched DNA (bDNA) in situ hybridization // J. Histochem. Cytochem. 2001. V. 49. № 5. P. 603–612.

32. Hendricks D.A., Stowe B.J., Hoo B.S. et al. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay // Am. J. Clin. Pathol. 1995. V. 104. № 5. P. 537–546.

33. Collins M.L., Irvine B., Tyner D. et al. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml // Nucleic Acids Res. 1997. V. 25. № 15. P. 2979–2984.

34. Horn T., Chang C., Urdea M.S. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays // Nucleic Acids Res. 1997. V. 25. P. 4842–4849.

35. Tsongalis G.J. Branched DNA technology in molecular diagnostics // Am. Soc. Clin. Pathol. 2006. V. 126. P. 448–453.

36. Jünemann S., Prior K., Szczepanowski R. et al. Bacterial community shift in treated periodontitis patients revealed by ion torrent 16S rRNA gene amplicon sequencing // PLoS One. 2012. V. 7. № 8. P. е41606.

37. Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates // Environ. Microbiol. 2010. V. 12. № 1. P. 118–123. doi: 10.1111/j.1462-2920.2009.02051.x.

38. Pudova Е.А., Chekanova Т.А., Markelov М.L., Dedkov V.G. et al. Development and testing of a DNA microarray for identification of particularly dangerous infectious pathogens // Epidemiology and infectious diseases. Actual issues. 2014. № 3. P. 13–19 (in Russian).

39. Rebrikov D.V., Korostin D.O., Shubina E.S., Ilyinsky V.V. NGS: high-throughput sequencing. Moscow: BINOM. Knowledge Lab, 2015. 232 p. (in Russian).

40. Sanger F., Nicklen S., Coulson A. DNA sequencing with chain-terminating inhibitors // Proc. Natl Acad. Sci. USA. 1977. V. 74. № 12. P. 5463–5467.

41. Nossa C.W. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome // World J. Gastroenterol. 2010. V. 16. № 33. P. 4135–4144.

42. Maiden M.C., Bygraves J.A., Feil E. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms // Proc. Natl Acad. Sci. USA. 1998. V. 95. № 6. P. 3140–3145.

43. Abbai N.S., Govender A., Shaik R., Pillay B. Pyrosequence analysis of unamplified and whole genome amplified DNA from hydrocarbon-contaminated groundwater // Mol. Biotechnol. 2012. V. 50. № 1. P. 39–40. doi: 10.1007/s12033-011-9412-8.

44. Zhou D., Rao M.S., Walker R. et al. Massively parallel signature sequencing // Methods Mol. Biol. 2006. № 331. P. 285–311.

45. Benthley D.R., Balasubramanian S., Swerdlow H.P. et al. Accurate whole human genome sequencing using reversible terminator chemistry // Nature. 2008. V. 456. № 7218. P. 53–59. doi: 10.1038/nature07517.


Review

For citations:


Kibirev Y.A., Burlachuk S.E., Grudcina A.S., Sityakov D.O., Isupov S.G., Drobkov V.I. Methods for identification of causative agents of dangerous and particularly dangerous infections based on the analysis of nucleic acids. Journal of NBC Protection Corps. 2018;2(4):22-35. (In Russ.) https://doi.org/10.35825/2587-5728-2018-2-4-22-35. EDN: yoqcsl

Views: 131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)