Reseach in the Sphere of Perspective Use of Biochemical and Medical Biocatalytic Technologies in the Interests of Armed Forces
https://doi.org/10.35825/2587-5728-2018-2-2-18-50
EDN: skzbup
Abstract
The article is dedicated to the review of the theoretical and experimental research of the Russian and foreign scientists in the enzymes both in native state and in forms of chemically stabilized nanosized particles, promising for the development of military products of different types. It summarises the results of use of biocatalysts on the basis of enzymes and microorganismsdestructors for the neutralization of ecotoxicants. The nature of enzymes is analyzed. The significant part of the article is dedicated to the data obtained regarding the sphere of biochemical and medical biocatalytic technologies for the development of enzymatic prophylactic and therapeutic means. A special attention is paid to the enzymes, used in protective equipment, to environmental biocatalysts, to biopharmaceuticals on the basis of enzymes and microorganismsdestructors for the utilization of reaction masses, to chemical detoxification of poisonous substances. The authors point out the main trends in the further research in the sphere of biotechnologies: enzymatic pharmaceuticals for prophylaxis and treatment of OP poisoning; enzymes in selfdegassing materials and in protective equipment; biocatalysts for soil, water and surface purification; biopharmaceuticals on the basis of enzymes and microorganismsdestructors for the degradation of reaction masses of toxic chemicals.
Keywords
About the Authors
I. V. FilimonovRussian Federation
Senior Researcher. Candidate of Technical Sciences
Brigadirskii Lane 13, Moscow 105005
A. A. Yankovskaya
Russian Federation
Applicant for a Degree, Candidate of Technical Sciences
Brigadirskii Lane 13, Moscow 105005
S. V. Kuzhelko
Russian Federation
Senior Officer of the Department
Brigadirskii Lane 13, Moscow 105005
V. V. Zavyalov
Russian Federation
Candidate of Chemical Sciences
Brigadirskii Lane 13, Moscow 105005
N. V. Zavyalova
Russian Federation
Zavyalova Natalya Vasilyevna. Leading Researcher. Doctor of Biological Sciences, Professor, Academician of the Academy of Military Sciences
Brigadirskii Lane 13, Moscow 105005
A. N. Golipad
Russian Federation
Chief of the Department. Candidate of Technical Sciences
Brigadirskii Lane 13, Moscow 105005
D. P. Kolesnikov
Russian Federation
Deputy Head of the Centre. Candidate of Technical Sciences, Associate Professor
Brigadirskii Lane 13, Moscow 105005
V. A. Kovtun
Russian Federation
Head of the Centre. Candidate of Chemical Sciences, Associate Professor
Brigadirskii Lane 13, Moscow 105005
V. I. Kholstov
Russian Federation
Member of Dissertation Council of the 27 Scientific Centre of the Ministry of Defence of the Russian Federation. Doctor of Chemical Sciences, Professo
Brigadirskii Lane 13, Moscow 105005
I. V. Lyagin
Russian Federation
Senior Researcher. Candidate of Chemical Sciences
Leninskie Gory 1-3, Moscow 119234
E. N. Efremenko
Russian Federation
Laboratory Chief. Doctor of Biological Sciences, Professor
Leninskie Gory 1-3, Moscow 119234
References
1. White A., Handler F., Smith E. et al. Principles of biochemistry. Moscow: 1981 (in Russian).
2. Varfolomeyev S.D. Biokinetics. Moscow: 1999 (in Russian).
3. Physical chemistry of bioprocesses / Ed. Varfolomeyev S.D. Moscow: 2014 (in Russian).
4. Human molecular polymorphism (in 2 Vols) / Ed. Varfolomeyev S.D. Moscow: 2007 (in Russian).
5. Efremenko E.N., Sergeeva V.S. Organophosphate hydrolase – an enzyme catalyzing degradation of phosphorus-containing toxins and pesticides // Russian Chemical Bulletin. 2001. V. 50. № 10. P. 1743–1749 (in Russian).
6. Efremenko E.N., Lyagin I.V., Zavyalov V.V. et al. Enzymes in the technology of destruction of organophosphorus toxic substances // Mendeleev Chemistry Journal. 2007. V. LI, № 2. P. 24–29 (in Russian).
7. Efremenko E., Votchitseva Y., Plieva F. et al. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography // Appl. Microbiol. Biotech. 2006. V. 70, № 5. P. 558–563.
8. Efremenko E., Lyagin I., Gudkov D. et al. Immobilized biocatalysts for detoxification of neurotoxic organophosphorus compounds // Biocatal. Biotransfor. 2007. V. 25, № 2–4. P. 359–364.
9. Votchitseva Yu. A., Efremenko E.N., Aliyev T.K. et al. Properties of hexahistidinetagged organophosphate hydrolase // Biochemistry. 2006. V. 76, № 2. P. 216–222 (in Russian).
10. Benning M.M., Kuo J.M., Raushel F.M. et al. Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents // J. Biochemistry. 1994. V. 33. P. 15001–15007.
11. Benning M.M., Kuo J.M., Raushel F.M. et al. Three-dimensional structure of the binuclear metal center of phosphotriesterase // J. Biochemistry. 1995. V. 34. P. 7973–7978.
12. Vanhooke J.L., Benning M.M., Raushel F.M. et al. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate // J. Biochemistry. 1996. V. 35. P. 6020–6025.
13. Efremenko E.N., Varfolomeyev S.D. Enzymes of degradation of organophosphorus neurotoxins // Biology and Chemistry Achievement. 2004. V. 44. P. 307–340 (in Russian).
14. Efremenko E.N., Lyagin I.V., Gudkov D.А. et al. Immobilized biocatalysts on the basis of organophosphorous in the process of decomposition of organophosphorus toxic substances // Theoretical and applied ecology. 2011. No. 4. P. 26–31 (in Russian).
15. Sirotkina M., Lyagin I., Efremenko E. Hydrolysis of organophosphorous pesticides in soil: new opportunities with ecocompatible immobilized His6-OPH // Int. Biodeterior. Biodegradation. 2012. V. 68. P. 18–23 (in Russian).
16. Patent RU № 2525658 (2014) (in Russian).
17. Gainullina E.T., Gulikova D.K., Ponsov M.A. et al. Antidotes against phosphororganus toxicants: problems and decisions // Mendeleev Chemistry Journal. 2010. V. LIV, № 4. P. 156–160 (in Russian).
18. Efremenko E., Lyagin I., Klyachko N. et al. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins // J. Controlled Release. 2017. V. 247. P. 175–181 (in Russian).
19. Patent RU № 2615176 (2017) (in Russian).
20. Atsmon J., Brill-Almon E., Nadri-Shay C. et al. Preclinical and first-in-human evaluation of PRX- 105, a PEGylated plant-derived, recombinant human acetylcholinesterase // J. Toxicol. Appl. Pharmacology. 2015. V. 287. Р. 202–209.
21. Masson P., Rochu В. Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings // Acta Nature. 2009. № 1. P. 68–69.
22. Johnson J.L., Cusack B., Hu Ghes T.F. et al. Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites // J. Biol. Chem. 2003. V. 278. P. 38948– 38955.
23. Cusack B., Romanovskis P., Johnson J.I. et al. A novel strategy for protection against organophosphate toxicity: Evolution of cyclic inhibitors with high affinity for the acetylcholinesterase peripheral site // J. Chem. Biol. Interact. 2005. V. 157–158. P. 370–376.
24. Lenz D.E., Broomfield C.A., Masson P. // Chemical warfare agents: chemistry, pharmacology and therapeutics / Eds. Romano J.A., Luskey J.A., Salem H. Boca Raton: CRC Press, 2007. P. 175.
25. Huang Y.О. et. al. // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 13603.
26. Ilyushin D., Haertley O.M., Bobik T.V. et al. Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo // Proc. Natl. Acad. Sci. USA. 2013. V. 110, № 4. 1243–1248. doi: 10.1073/pnas.1211118110. Epub. 2013 Jan 7.
27. Millard C.B., Lockridge O. Broomfield C.A. Design and expression of organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase // J. Biochemistry. 1995. V. 34. P. 15925–15933.
28. Millard C.B., Lockridge O., Broomfield C.A. Organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase: synergy results in a somanase // J. Biochemistry. 1998. V. 37. P. 237–247.
29. Yao Y., Liu J., Zhan C.G. Why does the G117H mutation considerably improve the activity of human butyrylcholinesterase against sarin? Insights from quantum mechanical/molecular mechanical free energy calculations // J. Biochemistry. 2012. V. 51. P. 8980–8992.
30. Masson P., Nachon F., Broomfield C.A. et al. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters // Chem. Biol. Interact. 2008. V. 175. P. 273–280.
31. Patent US №5689038 (1997).
32. Patent US №6403653 (2002).
33. Patent US № 6410603 (2002).
34. Patent US № 6642037 (2003).
35. Le Jeune K.E., Dravis B.S., Yang F. et al. Fighting nerve agent chemical weapons with enzyme technology // Ann. NY Acad. Sci. 1998. V. 864. P. 153–170.
36. Le Jeune K.E., Mesiano A.J., Bover S.B. et al. Dramatically stabilized phosphotriesterase-polymers for nerve agent degradation // J. Biotechnol. Bioengineering. 1997. V. 54. P. 105–114.
37. Le Jeune K.E., Wild J.R., Russel A.J. Nerve agents degraded by enzymatic foams // J. Nature. 1998. V. 395. P. 27–28.
38. Havens P.L., Rase H.F. // Ind. Eng. Chem. Res. 1993. V. 32, № 10. P. 2254–2258.
39. Le Jeune K.E., Russell A.J. Biocatalytic nerve agent detoxification // J. Biotech. Bioengineering. 1999. V. 62, № 6. P. 659–665.
40. Patent US № 4781959 (1988).
41. Patent RU № 2330717 (2008) (in Russian).
42. Efremenko E.N., Zavyalov V.V., Zavyalova N.V. et al. Сleavage of С-Р bond in phosphonates under the action of enzymatic biocatalysts // Theoretical and applied ecology. 2015. № 3. P. 47–54 (in Russian).
43. Efremenko E., Peregudov A., Kildeeva N. et al. // J. Biocatal. Biotransform. 2005. V. 23, № 2. P. 103–108 (in Russian).
44. Patent RU № 2261911 (2005) (in Russian).
45. Caldwell S.R., Raushel F.M. Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase from Pseudomonas diminuta // Appl. Biochem. Biotechnol. 1991. V. 31. P. 59–72.
46. Caldwell S.R., Raushel F.M. Detoxification of organophosphate pesticides using animmobilized phosphotriesterase from Pseudomonas diminuta // J. Biotechnol. Bioengineering. 1991. V. 37. P. 103–109.
47. Gill I., Ballesteros A. Degradation of organophosphorous nerve agents by enzyme-polymer nanocomposites: efficient biocatalytic materials for personal protection and large-scale detoxification // J. Biotechnol. Bioengineering. 2000. V. 70, № 4. P. 400–411.
48. Patent WO112482 (2004).
49. Mc Daniel C.S., Mc Daniel J., Wales M.E., Wild J.R. // Progress in Organic Coatings. 2006. V. 55. P. 182–188.
50. Sethunathan N., Yoshida T. // Can. J. Microbiol. 1973. V. 19. P. 873.
51. Munnecke D.M. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method // Appl. Environ. Microbiol. 1976. V. 32. P. 7–13.
52. Cüneyt M., Serdar C.M., Murdock D.C., Rohde M.F. Parathion hydrolase gene from Pseudomonas diminuta MG: subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli // J. Bio Technology. 1989. V. 7. P. 1151–1155.
53. Omburo G.A., Kuo J.M., Mullins L.S. et al. Characterization of the zinc binding site of bacterial phosphotriesterase // J. Biol. Chem. 1992. V. 267. P. 13278.
54. Varfolomeev S.D., Kurochkin I.N., Rainin E.I. et al. A new technological approach to chemical weapons destruction. Complete biological degradation of chemical munitions // RHZH. 1995. V. 39. № 4. P. 20–24 (in Russian).
55. Kharechko A.T., Myagkikh V.I., Ostroumov Yu.I. et al. The use of microorganisms for destruction of hazardous substances polluting // RHZH. 1993. V. 37. № 3. P. 40–43 (in Russian).
56. Boronin A.M., Sakharovskiy V.T., Starovoytov I.I. et al. Scientific bases of complex environmentally friendly technologies for mustard gas destruction // Appl. Biochem. Microbiol. 1996. V. 32. № 1. P. 61–68 (in Russian).
57. Varfolomeyev S.D., Kurochkin I.N., Skliar V.I. et al. // Biocataletic degradation of chemical warfare related materials. Edgewood, 1995. P. 16.
58. Rainina E., Varfolomeyev S.D., Wild J.R. // Biocatalytic degradation of chemical warfare related materials. Edgewood, 1995. P. 9.
59. Kharechko A.T., Myagkikh V.I., Koriakin Y.N. et al. Evaluation of the impact on the dynamics of microbial decomposition of soman in soil // RHZH. 1995. V. 39, № 4. P. 104–107 (in Russian).
60. Funk S.B., Roberts D.J., Crawford D.J. et al. Initial phase optimization for bioremediation of munition compound-contaminated soils // Appl. Env. Microbiol. 1992. V. 59, № 7. P. 2171–2177.
61. Kaake R.H., Roberts D.J., Stevens T.O. et al. Bioremediation of soils contaminated with the herbicide 2-secbuty1-4, 6-dinitrophenol (dinoseb) // Appl. Env. Microbiol. 1990. V. 56, № 6. Р. 1666–1671.
62. Howard J., Fox S. Review of current research projects and innovations in remediation // Gen. Eng. News. 1994. V. 14, № 17. Р. 8–9.
63. Tursman J.F., Cork D.J. Subsurface contaminant bioremediation engineering // Crit. Rev. Env. Contr. 1992. V. 22, № 5. P. 1–26.
64. Biodegradation of chemical warfare agents: demilitarization applications. Edgewood, 1993.
65. Biocatalytic degradation of chemical warfare related materials. Edgewood, 1995.
66. De Frank J.J., Cheng Tu-Chen, Rolakowsky G.E. et al. Advances in the biodegradation of chemical warfare agents and related materials: Advances in the biodegradation of chemical warfare agents and related materials / Abstr. Keystone symp. Environ. Biotechnol. Lake Tahoe, Calif., March 16–22, 1995 // Cell. Biochem. 1995. V. 21a. P. 41.
67. Tu-Chen Cheng, Harvey S.P., Chen G.L. Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorous nerve agents and nucleotide sequence of the enzyme // Арpl. Env. Microbiol. 1996. V. 62. № 5. P. 1636–1641.
68. Dumas D.P. et al. Inactivation of organophosphorous nerve agents by the phosphotriesterase from Pseudomonas diminuta // Arch. Biochem. Biophys. 1990. V. 277, № 1. P. 155–159.
69. Dumas D.P. et al. Purification and properties of the phosphotriesterase from Pseudomonas diminuta // J. Biol. Chem. 1989. V. 264. P. 19655–19659.
70. Landis W.G. et al. Identification and comparison of the organophosphate acid anhydrase activations of the clam, Rangia cuneata // Comp. Biochim. Physiol. 1989. V. 94, № 2. P. 365–371.
71. Harvey S., De Frank J.J., Kamely D. et al. Microbiol degradation of agent orange and mustard related compounds // Biotechnology: bridging research and applications / Eds. Kamely D., Chakrabatry A.M., Komguti S.E. Dordrecht, Kluwer Аcad. Pub., 1991. P. 221–230.
72. Efremenko E.N., Sirotkin M.S., Zavyalov N.V. et al. Immobilized biocatalysts for heterogeneous decomposition of organophosphorus agents // Bulletin of the Russian People's Friendship University. Series: Ecology and life safety. 2011. № 1. P. 61–66 (in Russian).
73. Sirotkina M., Lyagin I., Efremenko E. Hydrolysis of organophosphorus pesticides in soil: New Opportunities with ecocomhatible immobilized His6 – OPH // International Biodeterioration & Biodegradation. 2012. № 68. P. 18–23.
74. Patent RU № 2451077 (2012) (in Russian).
75. Petrov S.V., Koriakin Yu.N., Kholstov V.I. et al. Biotechnology in chemical weapons destruction // RHZH. 1995. V. 39. № 4. P. 18–20 (in Russian).
76. Bakulin Yu.S., Zavyalova N.V., Kharechko A.T., Kholstov V.I. et al. Experimental verification of biodegradation of reaction mass of chemical detoxification of FEV phosphonate-degrading bacteria // Federal and regional issues of chemical weapons destruction. Moscow: VINITI, Release № 2. 2000. P. 47– 52 (in Russian).
77. Petrov S.V., Kholstov V.I., Zavyalova N.V. et al. Biodegradation of organophosphorus agents // Federal and regional issues of chemical weapons destruction. Moscow: VINITI, release № 1. 1999. P. 51–60 (in Russian).
78. Kiernan V. Bacteria with a healthy appetite for mustard gas // J. New Sci. 1994. V. 141, № 1914. P. 10–11.
79. Landis W.G. et al. Alternative substrates and an inhibitor of the organophosphate acid anhidrase activities of the protozoan // Tetrahymena Thermophilia. Comp. Biochim. Physiol. 1989. № 2. P. 211–216.
80. Trapp R. SIPRI Chemical and Biological Warfare Studies. London, Philadelphia: Taylor and Fransis Ltd. 1985.
81. Attaway H., Nelson J.О., Baya A.M. et al. Bacterial detoxification of diisopropyl fluorophosphate // Appl. Environ. Microbiol. 1987. V. 53, № 7. P. 1685–1689.
82. De Frank J.J., Cheng T.C. // J. Bacteriol. 1991. V. 173. P. 1938–1943.
83. Schowanek D., Verstraete W. Phosphonate utilization by bacterial cultures and enrichments from environmental samples // Appl. Environ. Microbiol. 1990. V. 56. P. 895–903.
84. Smith J.D. Metabolism of phosphonates. The role of phosphonates in living systems / Ed. Hilderbrand, R.L., Boca Raton, CRC Press, 1983. P. 31–54.
85. Selvapandiyan A., Bhatnagar Raj K. Isolation of glyphosate-metabolising Pseudomonas: detection, partial purification and localization of carbon-phosphorus lyase // Appl. Microbiol. Biotechnol. 1994. V. 40. P. 876–882.
86. Shinabarger D.L., Braymer H.D. Glyphosate catabolism by Pseudomonas sp. strain PG2982 // J. Bacteriol. 1986. V. 168. P. 702–703.
87. Daughton C.G., Cook A.M., Alexander M. // J. Agric. Food. Chem. 1979. V. 27, № 6. P. 1375–1382.
88. Verwej A., Boter H.L. // Pestic. Sci. 1977. V. 7, № 3. P. 355–362.
89. Kaaijk J., Frijlink C. // Pestic. Sci. 1977. V. 8, № 4. P. 544–548.
90. Cook A.M., Daughton C.G., Alexander M. Benzene from bacterial cleavage of the carbonphosphorus bond of phenylphosphonates // Biochem. J. 1979. V. 184, № 3. P. 453–455.
91. Daughton C.G., Cook A.M., Alexander M. // FEMS Microbiol. Lett. 1989. V. 5, № 1. P. 91–93.
92. Matys S.V., Laurinavičius L.S., Nesmeyanova M.A. Influence of culture conditions on decomposition of methylphosphonic acid with E. coli cells. // Environmental Biotechnology: Proc. rep. Pushchino .: 1994. P. 13 (in Russian).
93. Wild J.R., Ruashel F.M. The genetic and biochemical manipulation of a broad-spectrum organophosphate degrading system / Report No: 24002- Ls U.S. Department of the Army Research office Funding 1990. No: DAAZ 03-87-0017.
94. Robinson J.P.P. Chemical weapons: destruction and conversion (SPJRJ). N.Y. Publ: Taylor, Francis: 1980. P. 9–56.
95. Penski E.C. TR – ARCSL – TR – 83021. AD B07518L Aberdeen Proving Ground, MD US Army, Res. Develop. Command. 1983.
96. Alexandrov V.N., Emelyanov V.I. Toxic substances. Moscow: Military Publishing, 1990 (in Russian).
97. Ashikhmina T.Ya. Scientific and methodological basis of the system of complex ecological monitoring of chemical weapons storage and destruction plants. Kirov: Vyatka, 2001 (in Russian).
98. Savelyeva E.I., Radilov A.S., Kuznetsova T.A. et al. Determination of methylphosphonic acid and its esters as chemical markers of organophosphorus agents // J. Appl. Chem. 2001. V. 74. № 10. P. 1677 (in Russian).
99. Savelyeva E.I., Zenkevich I.G., Kuznetsova T.A. et al. Study of the products of transformation of organophosphorus compounds with gas chromatography - mass spectrometry // RHZH. 2002. V. 46. № 6. P. 89-92 (in Russian).
100. Shames S.L., Wackett L.P., La Barge M.S. et al. Fragmentative and stereo chemical isomerization probes for hemolytic carbon to phosphorus bond scission catalyzed by bacterial carbon-phosphorus lease // J. Bioorg. Chem. 1987. V. 15. P. 366–373.
101. Penski E.C. TR – ARCSL – TR – 83021. AD B07518L Aberdeen Proving Ground. MD: US Army Res. Develop. Command. 1983.
102. Small V.J. TR – 8202 (AD – B077 091) Fort Detrick. MD: US Army Med. Res. Develop. Command. 1983.
103. Biological degasation of chemical weapons. Conference materials of scientific research institutes of NATO. M., 1991 (in Russian).
104. Milstein O., Nicklas B., Huttermann A. Oxidation of aromatic compounds in organic solvents with lea case from Trametes vesicular // Appl. Microbiol. Biotechnology. 1989. V. 31. P. 70–74.
105. Clifford D., Lin C.C. // Government Rep. 1991. V. 91. № 15. P. 124.
106. Kanel A. // J. Polytechn. 1990. № 5. P. 557–559.
107. Hackl R.P., Wright F.R. Bruynesteyn A. // Appl. Organometall. Chem. 1990. V. 4, № 4. P. 245–250.
108. Patent RU № 2185901 (2002) (in Russian).
109. Reutse K. Pollution of soil. M.: Chemistry, 1986 (in Russian).
110. Author's Certificate USSR № 513939 (1989).
111. Kuznetsov S.I. Microflora of lakes and geochemical activity L.: Science, 1970 (in Russian).
112. Golovleva L.A. Degradation of pesticides by microorganisms: Biotechnological aspects // Microbiology water purification: Proc. 1 All-Union rep. Conf. Kiev: N. Dumka, 1982 (in Russian).
113. Leonova L.I,. Stupina V.V. Algae purification of wastewater. Kiev: N. Dumka, 1990 (in Russian).
114. Tarasenko N.F., Zakharchuk RV. Wastewater purification with biocenoses of microalgae and bacteria // Microbiology of activated sludge of water purification. Kiev: Science. Dumka, 1982 (in Russian).
115. Simonds M.A. Experience with algal bloom and the removal of phosphorus from sewage // J. Water Res. 1973. V. 7, № 1. P. 255–264.
116. Patent application France № 2004566 (1969).
117. Patent US № 3716484 (1972).
118. Patent application GE № 2016798 (1970).
119. Patent application France № 2043202 (1970).
120. Patent US № 3499837 (1967).
121. Patent US № 3725269 (1972).
122. Patent application France № 2004566 (1969).
123. Patent application US № 3617569 (1970).
124. Patent application France № 32009220 (1969).
125. Patent application GE № 1959652 (1968).
126. Author's Certificate USSR № 228210 (1984) (in Russian).
127. Author's Certificate USSR № 258499 (1985) (in Russian).
128. OST B-84-2398-88. Biotesting industry wastewater. The main provisions (1988) (in Russian).
129. OST B-84-2399-88. Biotesting industry wastewater. Methods of analysis (1988) (in Russian).
130. Zavyalova N.V., Filimonov I.V., Yеfrеmеnko Yе.N., et al. Biotechnological methods and neutralizing agents for decontamination of soil and water treatment, polluted with ecotoxicants // Theoretical and applied ecology. 2014. № 4. Р. 26–33 (in Russian).
131. Zavyalova N.V., Filimonov I.V., Kovtun V.A. et al. The main technological operations and stages of bioremediation of soils and water purification in situ // Theoretical and applied ecology. 2014. V. 4. С. 34–41 (in Russian).
132. Zavyalova N.V., Filimonov I.V., Yеfrеmеnko Yе.N. et al. Biocatalysts based on strains of microorganisms and enzymes having an increased ability to degrade toxic substances and their degradation products during cleaning of soils and waters // Theoretical and applied ecology. 2014. № 4. Р. 42–50 (in Russian).
133. Yankovskaya A.A., Filimonov I.V., Zavyalova N.V. et al. Ecologically safe bioremediation of soil and water purification in situ from chemical warfare agents destruction products // Theoretical and applied ecology. 2016. V. 4. С. 89–95 (in Russian).
134. Styazhkin K.K., Tumanov A.S., Ashikhmina T.Ya. et al. Experimental Assessing microbicidal and degradation potential of the biological product, organophosphorus compounds destructor // Theoretical and applied ecology. 2014. V. 4. P. 51–59 (in Russian).
135. Tumanov A.S., Ashikhmina T.Ya., Leschenko A.A. et al. Bio-preparation with a broad spectrum of bio-degradative activity for soil remediation in the chemical weapons destruction plant «Maradykovsky» // Theoretical and applied ecology. 2015. V. 3. С. 61–69 (in Russian).
136. Styazhkin K.K., Petrov S.V., Tumanov A.S. et al. Biological product for soil remediation within the zone of protective measures of the chemical weapons destruction plant «Maradykovsky» // Theoretical and applied ecology. 2013. V. 4. P. 41–48 (in Russian).
137. Efremenko E.N., Lyagin I.V., Gudkov D.A. Combined application of enzymatic and bacterial biocatalysts in the processes of biodegradation of organophosphorous chemical warfare agents and products of their destruction // Theoretical and applied ecology. 2015. V. 3. P. 35–39 (in Russian).
138. Le Jeune K.E., Russell A.J. Biocatalytic nerve agent detoxification in firefighting foams // J. Biotechnol. Bioengineering. 1999. V. 62, № 6. P. 659–665.
139. Yankovskaya A.A., Filimonov I.V., Zavyalova N.V. et al. Directions for use of biotechnological methods of liquidating the consequences of chemical weapons destruction // Theoretical and applied ecology. 2017. V. 4. P. 66–72 (in Russian).
140. Utkin A.Yu., Lieberman B.M., Kondratyev V.B. et al. Mathematical description of organophosphorus poisons detoxication // Russian Chemical Journal. 2007. V. L (2). N 2. P. 12–18 (in Russian).
141. Patent RU № 2352375 (2009) (in Russian).
142. Munro N.B., Talmage S.S., Griffin G.D. et al. The sources, fate, and toxicity of chemical warfare agent degradation products // Research Reviews. 1999. V. 107, № 12. P. 933–974.
143. The Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction. OPCW, C.N. 2005.
144. Efremenko E.N., Zavyalova N.V., Gudkov D.A. et al. Environmentally safe biodegradation of reaction mass formed at destruction of organophosphorus agents // Russian Chemical Journal. 2010. V. 4. P. 19–24 (in Russian).
145. Patent RU № 2408724 (2011) (in Russian).
146. Patent WO №01/56380 (2001).
147. Patent US №5589386 (1996).
148. Patent US №5928927 (1999).
149. Patent US № 6080566 (2000).
150. Hoskin F.-C.G., Walker J.E., Dettbarn W.-D. et al. // Biochem. Pharmacol. 1995. V. 49, № 5. P. 711–715.
151. Rastogi V.K., De Frank J.J., Cheng T.-C. et al. // Biochem. Biophys. Res. Commun. 1997. V. 241, № 2. P. 294–296.
152. De Frank J.J, Guelta M., Harvey S. et al. // Enzymes in actions: green solution for chemical problem / Eds. Zwanenburg B. et al. Netherlands: Kluver Acad. Publ., 2000. P. 193–209.
153. Patent US № 7001758 В1 (2006).
154. Patent US № 6080906 (2000).
155. Patent US № 2203116 (2003).
156. Patent US № 6498281 (2002).
157. Patent RU № 2296164 (2007) (in Russian).
158. Patent RU № 2154103 (2000) (in Russian).
159. Patent RU № 2360967 (2009) (in Russian).
160. Patent RU № 2394910 (2010) (in Russian).
Review
For citations:
Filimonov I.V., Yankovskaya A.A., Kuzhelko S.V., Zavyalov V.V., Zavyalova N.V., Golipad A.N., Kolesnikov D.P., Kovtun V.A., Kholstov V.I., Lyagin I.V., Efremenko E.N. Reseach in the Sphere of Perspective Use of Biochemical and Medical Biocatalytic Technologies in the Interests of Armed Forces. Journal of NBC Protection Corps. 2018;2(2):18-50. (In Russ.) https://doi.org/10.35825/2587-5728-2018-2-2-18-50. EDN: skzbup