Validation of Сhoice of Laboratory Model for Preclinical Estimation of Medical Protectors Against Bolivian Hemorrhagic Fever
https://doi.org/10.35825/2587-5728-2019-3-4-319-328
EDN: lduasp
Abstract
This review is dedicated to the peculiarities of pathogenesis of the experimental Bolivian hemorrhagic fever (BHF) - the disease, caused by Machupo virus (Arenaviridae family). The authors come to the conclusion that for carrying out preclinical researches of the medical means of protection (MMP) in vivo on small laboratory animals it is expedient to use guinea pigs, infected with a strain of Chicava or with a variant of Carvallo strain, adapted for these animals. The use of guinea pigs as small laboratory animals when studying pathogenesis of the disease caused by Machupo virus allows to carry out statistically reliable definition of quantitative indices of an experimental infection and to select medicines for the final stage of preclinical assessment. As arenaviruses block the process of formation of interferon (IFN) in the infected organism, mice, defective by IFN formation, are the perspective animal models for the study of BHF pathogenesis and may be used for the study of attenuated variants of Machupo virus. The Javanese macaques (Macaca fascicularis) are the laboratory animals, modeling the pathogenetic manifestations of BHF in humans. They can be used when carrying out the final stages of preclinical assessment of means of medical protection.
About the Authors
T. E. SizikovaRussian Federation
Tatyana Eugenievna Sizikova. Researcher. Candidate of Biological Sciences
Oktyabrskiy Street 11, Sergiev Posad 141306
V. N. Lebedev
Russian Federation
Vitaly Nikolayevich Lebedev. Leading Researcher. Doctor of Biological Sciences, Professor
Oktyabrskiy Street 11, Sergiev Posad 141306
V. B. Pantukhov
Russian Federation
Vladimir Borisovich Pantukhov. Head of the Scientific Research Department.Candidate of Biological Sciences
Oktyabrskiy Street 11, Sergiev Posad 141306
E. Y. Vakhnov
Russian Federation
Eugeny Iurievich Vakhnov. Deputy Head of the Biological Defence Department of the Office of the Head of NBC Protection Troops. Candidate of Medical Sciences
Oktyabrskiy Street 11, Sergiev Posad 141306
S. V. Borisevich
Russian Federation
Sergey Vladimirovich Borisevich. Head of the FSBE «48 Central Scientific Research Institute». Doctor of Biological Sciences, Corresponding Member of RAS
Oktyabrskiy Street 11, Sergiev Posad 141306
References
1. McLay L., Ansary A., Liang Y., Ly H. Targeting virulence mechanisms for the prevention and therapy of arenaviral hemorrhagic fever // Antiviral Res. 2013. V. 97. № 2. P. 81–92. https://doi.org/10.1016/j.antiviral.2012.12.003
2. Radoshitzky S.R., Bao Y., Buchmeier M.J. et al. Past, present and future of arenavirus taxonomy // Arch. Virol. 2015. V. 160. № 7. P. 1851–1874. https://doi.org/10.1007/s00705-015-2418-y
3. Abraham J., Kwong J.A., Albarino C.C. et al. Hostspecies transferring receptor 1 orthologs are cellular receptors for nonpathogenic New World Clade B arenaviruses // PLos Pathog. 2009. V. 5. № 4. P. 1–10. https://doi.org/10.1371/journal.ppat.1000358
4. Milazzo M.L., Campbell G.L., Fulhorst C.F. Novel arenavirus infection in humans, US // Emerg. Infect. Dis. 2011. V. 17. № 8. P. 1417–1420. https://doi.org/10.3201/eid1708.110285
5. Shao J., Liang Y., Ly H. Human hemorrhagic fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis // Pathogens. 2015. V. 4. P. 283–306.
6. Sayburn A. WHO gives go ahead for experimental treatments to be used in Ebola outbreak // BMJ. 2014. V. 349. P. 1.
7. Charrel R.N., de Lamballerie X. Arenaviruses other than Lassa virus // Antiviral Res. 2003. V. 57. № 1–2. P. 89–100.
8. Johnson K.M. Epidemiology of Machupo virus infection. 3. Significance of virological observations in man and animals // Am. J. Trop. Med. Hyg. 1965. V. 14. № 5. P. 816–818.
9. Mackenzie R.B., Beye H.K., Valverde L., Garron H. Epidemic hemorrhagic fever in Bolivia. I. A preliminary report of the epidemiologic and clinical findings in a new epidemic area in South America // Am. J. Trop. Med. Hyg. 1964. V. 13. P. 620–625.
10. Radoshitzky S.R., Jahrling P.B., Bavari S. Bolivian hemorrhagic fever / Eds Singh S.K., Ruzek D. Viral hemorrhagic fevers. Boca Raton, FL: CRC Press, 2014. P. 339–358.
11. Golden J.W., Hammerbeck C.D., Mucker E.M., Brocato R.L. Animal models for the study of rodent-borne hemorrhagic fever viruses: Arenaviruses and Hantaviruses // Biomed. Res. Int. 2015. V. 2015. P. 793257. https://doi.org/10.1155/2015/793257
12. Johnson K.M., Wiebenga N.H., Mackenzie R.B. et al. Virus isolations from human cases of hemorrhagic fever in Bolivia // Proc. Soc. Exp. Biol. Med. 1965. V. 118. P. 113–118. https://doi.org/10.3181/00379727-118-29772
13. Aguilar P.V., Camargo W., Vargas J. et al. Reemergence of Bolivian hemorrhagic fever, 2007–2008 // Emerg. Infect. Dis. 2009. V. 15. № 9. P. 1526–1528. https://doi.org/10.3201/eid1509.090017
14. Radoshitzky S.R., Kuhn J.H., de Kok-Mercado F. et al. Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses // Expert. Opin. Drug Discov. 2012. V. 7. № 7. P. 613–632. https://doi.org/10.1517/17460441.2012.687719
15. Buchmeier M.J., De la Torre J.C., Peters C.J. // In: Feilds Virology. V. 2. / Eds. Knipe D.M., Howley P.M. Lippencott: Williams and Wilkins, 2013. P. 1283–1303.
16. Centers for Disease Control and Prevention. Bolivian hemorrhagic fever: El Beni Department, Bolivia, 1994 // JAMA. 1995. V. 273. № 3. P. 194–196.
17. Peters C.J., Kuehne R.W., Mercado R.R. et al. Hemorrhagic fever in Cochabamba, Bolivia, 1971 // Am. J. Epidemiol. 1974. V. 99. № 6. P. 425–433.
18. Tesh R.B. Viral hemorrhagic fevers of South America // Biomedica. 2002. V. 22. № 3. P. 287–295.
19. Kastello M.D., Eddy G.A., Kuehne R.W. A rhesus monkey model for the study of Bolivian hemorrhagic fever // J. Infect. Dis. 1976. V. 133. № 1. P. 57–62.
20. Khmelev A.L., Borisevich I.V., Pantiukhov V.B. et al. Use of guinea pigs to evaluate the efficacy of a heterological immunoglobulin against Bolivian hemorrhagic fever // Vopr. Virusol. 2009. V. 54. № 4. P. 42–44.
21. Terrell T.G., Stookey J.L., Eddy G.A., Kastello M.D. Pathology of Bolivian hemorrhagic fever in the rhesus monkey // Am. J. Pathol. 1973. V. 73. № 2. P. 477–494.
22. Wagner F.S., Eddy G.A., Brand O.M. The African green monkey as an alternate primate host for studying Machupo virus infection // Am. J. Trop. Med. Hyg. 1977. V. 26. № 1. P. 159–162. https://doi.org/10.4269/ajtmh.1977.26.159
23. Webb P.A., Justines G., Johnson K.M. Infection of wild and laboratory animals with Machupo and Latino viruses // Bull. World Health Organ. 1975. V. 52. № 4–6. P. 493–499.
24. Eddy G.A., Scott S.K., Wagner F.S., Brand O.M. Pathogenesis of Machupo virus infection in primates // Bull. World Health Organ. 1975. V. 52. № 4–6. P. 517–521.
25. Bell T.M., Shaia C.I., Bunton T.E. et al. Pathology of experimental Machupo virus infection, Chicava strain, in Cynomolgus macaques (Macaca fascicularis) by intramuscular and aerosol exposure // Vet. Pathol. 2015. V. 52. № 1. P. 26–37. https://doi.org/10.1177/0300985814540544
26. Dabisch P.A., Kline J., Lewis C. Characterization of a head-only aerosol exposure system for nonhuman primates // Inhal. Toxicol. 2010. V. 22. № 3. P. 224–233. https://doi.org/10.3109/08958370903191023
27. Hartings J.M., Roy C.J. The automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primates // J. Pharmacol. Toxicol. Methods. 2004. V. 49. № 1. P. 39–55. https://doi.org/10.1016/j.vascn.2003.07.001
28. Roy C.J. Reed D.S., Hutt J.A. Aerobiology and inhalation exposure to biological select agents and toxins // Vet. Pathol. 2010. V. 47. № 5. P. 779–789. https://doi.org/10.1177/0300985810378650
29. Bradfute S.B., Stuthman K.S., Shurtleff A.C., Bavari S. A STAT-1 knockout mouse model for Machupo virus pathogenesis // Virol. J. 2011. V. 8. P. 300. https://doi.org/10.1186/1743-422X-8-300
30. Bell T.M., Bunton T.E., Shaia C.I. et al. Pathogenesis of Bolivian Hemorrhagic fever in Guinea Pigs // Vet. Pathol. 2016. V. 53. № 1. P. 190–199. https://doi.org/10.1177/0300985815588609
31. Golden J.W., Beitzel B., Ladner J.T. et al. An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection // Sci. Rep. 2017. V. 7. P. 4679. https://doi.org/10.1038/s41598-017-04889-x
32. Weissenbacher M.C. Coto C.E., Calello M.A. Crossprotection between Tacaribe complex viruses. Presence of neutralizing antibodies against Junin virus (Argentine hemorrhagic fever) in guinea pigs infected with Tacaribe virus // Intervirology. 1975–1976. V. 6. № 1. P. 42–49. https://doi.org/10.1159/000149452
33. Fan L. Briese T., Lipkin W.I. Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction // J. Virol. 2010. V. 84. № 4. P. 1785– 1791. https://doi.org/10.1128/JVI.01362-09
34. Martínez-Sobrido L., Giannakas P., Cubitt B. et al. Differential inhibition of type I interferon induction by arenavirus nucleoproteins // J. Virol. 2007. V. 81. № 22. P. 12696–12703. https://doi.org/10.1128/jvi.00882-07
35. Koma T., Patterson M., Huang C. et al. Virus Expressing GPC of the Candid#1 Vaccine Strain ofJunin Virus Is Highly Attenuated and Immunogenic // J. Virol. 2015. V. 90. № 3. P. 1290–1297. https://doi.org/10.1128/jvi.02615-15
Review
For citations:
Sizikova T.E., Lebedev V.N., Pantukhov V.B., Vakhnov E.Y., Borisevich S.V. Validation of Сhoice of Laboratory Model for Preclinical Estimation of Medical Protectors Against Bolivian Hemorrhagic Fever. Journal of NBC Protection Corps. 2019;3(4):319-328. (In Russ.) https://doi.org/10.35825/2587-5728-2019-3-4-319-328. EDN: lduasp