Preview

Journal of NBC Protection Corps

Advanced search

CANARY Technology: Working Principles of Biosensor, Detection of Infectious Pathogens

https://doi.org/10.35825/2587-5728-2020-4-4-431-440

EDN: dbyufp

Abstract

Reusable biosensors for the detection of biochemical analytes are widely used in clinical and laboratory practice. However, biosensors for the detection of pathogenic microorganisms are still under development or implementation. One of these devices is CANARY biosensor (Cellular Analysis and Notification of Antigen Risks and Yields), used by the US Army to indicate pathogenic biological agents. The aim of this article is to consider operating principles and molecular-biological foundations of CANARY biosensor, to analyze the possible directions of work and the prospects for creating domestically made biosensors based on eukaryotic cells. The concept of CANARY is that its receptor component is a B-lymphocyte, modified using genetic engineering, which carries specific IgM-like B-cell receptors on the surface of the cytoplasmic membrane. These cells are able to specifically recognize the target antigen and generate a photosignal through the aequorin protein. Currently, biosensors are already created for the detection of causative agents of plague (100–1000 CFU / ml), tularemia (100 CFU / ml), anthrax (100–500 spores / ml), smallpox (<500 CFU / ml), some toxins (ricin – 3 ng / ml, botulinum toxin – 16 pg / ml). They are based on the CANARY biosensor. Due to high sensitivity and specificity of this method, the relative simplicity and high speed of analysis of one sample, the possibility of analyzing aerosol samples, this technology should be considered as a promising basis for the creation of domestically made biological sensors to detect hazardous biological agents in biological samples, water, food, ecological samples and in aerosols. The deterioration of the global epidemic situation caused by the spread of various strains of SARS-CoV-2 makes sensors based on CANARY technology especially relevant. To create a domestic analogue of such a biosensor, close cooperation with scientific institutions that specialize in molecular genetics and manufacturers of laboratory equipment is required.

About the Authors

A. S. Gorshkov
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Anton Sergeyevich Gorshkov. Researcher of the Scientific and Researcher Department. Candidate of Medical Science

Oktyabrsky Avenue 119, Kirov 610000



D. V. Pechenkin
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Denis Valeryevich Pechenkin. Chief of the Scientific and Research Department. Candidate of Medical Science

Oktyabrsky Avenue 119, Kirov 610000



A. V. Kuznetsovskiy
Branch Office of the Federal State Budgetary Establishment «48 Central Scientific Research Institute» of the Ministry of Defence of the Russian Federation
Russian Federation

Andrey Vladimirovich Kuznetsovskiy. Chief of the Department of Planning of Science and Research – Deputy Chief of the Branch. Candidate of Biological Science

Oktyabrsky Avenue 119, Kirov 610000



References

1. Amini K., Kraatz H-B. Recent developments in biosensor technologies for pathogen detection in water // JSM Environmental Science Ecology. 2015. V. 3. № 1. P. 1012.

2. Уткин Д.В., Осина Н.А., Куклев В.Е. и др. Биосенсоры: современное состояние и перспективы применения в лабораторной диагностике особо опасных инфекционных болезней // Проблемы особо опасных инфекций. 2009. № 102. С. 11–14. Utkin D.V., Osina N.A., Kuklev V.E. et al. Biosensors: modern state and prospects for using in the diagnostics of particulary dangerous infection deseases // Problems of Particularly Dangerous Infections. 2009. № 102. P. 11–14 (in Russian).

3. Asal M., Özen Ö., Şahinler M., Polatoğlu İ. Recent developments in enzyme, DNA and immunobased biosensors // Sensors (Basel). 2018. V. 18. № 6. P. 1924. https://doi.org/10.3390/s18061924

4. Layqah L.A., Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes // Microchim. Acta. 2019. V. 186. № 4. P. 224. https://doi.org/10.1007/s00604-019-3345-5

5. Bartholomew R.A., Ozanich R.M., Arce J.S. et al. Evaluation of immunoassays and general biological indicator tests for field screening of Bacillus anthracis and ricin // Health Secur. 2017. V. 15. № 1. P. 81–96. https://doi.org/10.1089/hs.2016.0044

6. Xing J.Z., Zhu L., Huang B. et al. Microelectronicsensing assay to detect presence of Verotoxins in human faecal samples // J. Appl. Microbiol. 2012. V. 113. № 2. P. 429–37. https://doi.org/10.1111/j.1365-2672.2012.05321.x

7. Banerjee P., Kintzios S., Prabhakarpandian B. Biotoxin detection using cell-based sensor // Toxins (Basel). 2013. V. 5. № 12. P. 2366–2383. https://doi.org/10.3390/toxins5122366

8. Gupta N., Renugopalakrishnan V., Liepmann D. et al. Cell-based biosensors: recent trends, challenges and future perspectives // Biosens. Bioelectron. 2019. V. 141. P. 111435. https://doi.org/10.1016/j.bios.2019.111435

9. Nair A., Chauhan P., Saha B., Kubatzky K.F. Conceptual evolution of cell signaling // Int. J. Mol. Sci. 2019. V. 20. № 13. P. 3292. https://doi.org/10.3390/ijms20133292

10. Eichmann T.O., Lass A. DAG tales: the multiple faces of diacylglycerol – stereochemistry, metabolism, and signaling // Cell. Mol. Life. Sci. 2015. V. 72. № 20. P. 3931–3952. https://doi.org/10.1007/s00018-015-1982-3

11. Berridge M.J. The inositol trisphosphate/ calcium signaling pathway in health and disease // Physiol. Rev. 2016. V. 96. № 4. P. 1261–1296. https://doi.org/10.1152/physrev.00006.2016

12. Bevilacqua A., Bizzarri M. Inositols in insulin signaling and glucose metabolism // Int. J. Endocrinol. 2018. V. 2018. P. 1968450. https://doi.org/10.1155/2018/1968450

13. Hagen S., Brachs S., Kroczek C., Fürnrohr B.G. et al. The B cell receptor-induced calcium flux involves a calcium mediated positive feedback loop // Cell Calcium. 2012. V. 51. № 5. P. 411–417. https://doi.org/10.1016/j.ceca.2012.01.004

14. Иммунология: структура и функции иммунной системы: учебное пособие / Р.М. Хаитов. 2013. 280 с. Immunology: structure and function of immune system / R.M. Haitov. 2013. 280 p. (in Russian).

15. Petrovick M.S., Harper J.D., Nargi F.E. et al. Rapid sensors for biological-agent identification // Lincoln Laboratory J. 2007. V. 17. № 1. Р. 63–84.

16. Patent US WO 2008/048300 A2 (2008).

17. Patent US 2010/0062415 A1 (2010).

18. Rider T.H., Petrovick M.S., Nargi F.E. et al. A B cell-based sensor for rapid identification of pathogens // Science. 2003. V. 301. № 5630. P. 213–215. https://doi.org/10.1126/science.1084920

19. Zamani P., Sajedi R.H., Hosseinkhani S., Zeinoddini M., Bakhshi B. A luminescent hybridomabased biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway // Biosens. Bioelectron. 2016. V. 79. P. 213–219. https://doi.org/10.1016/j.bios.2015.12.018

20. Price P.W., McKinney E.C., Wang Y. et al. Engineered cell surface expression of membrane immunoglobulin as a means to identify monoclonal antibody-secreting hybridomas // J. Immunol. Methods. 2009. V. 343 № 1. P. 28–41. https://doi.org/10.1016/j.jim.2009.01.005


Review

For citations:


Gorshkov A.S., Pechenkin D.V., Kuznetsovskiy A.V. CANARY Technology: Working Principles of Biosensor, Detection of Infectious Pathogens. Journal of NBC Protection Corps. 2020;4(4):431-440. (In Russ.) https://doi.org/10.35825/2587-5728-2020-4-4-431-440. EDN: dbyufp

Views: 315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5728 (Print)
ISSN 3034-2791 (Online)