COVID-19 Pandemic as an Indicator of «Blank Spots» in Epidemiology and Infectious Pathology
https://doi.org/10.35825/2587-5728-2020-4-3-338-373
EDN: ltdlxr
Abstract
The COVID-19 (Coronavirus Disease 2019) pandemic revealed many «blank spots» in epidemiology at that very moment when humanity became confident that all epidemic disasters had remained in the distant past. The aim of this article is to study COVID-19 pandemic as an indicator of «blank spots» in epidemiology and infectious pathology. The article substantiates that the COVID-19 epidemic started much earlier than it was identified and recognized in China. The failure to establish the primary natural reservoir of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) among vertebrates suggests an expansion of searches for invertebrates. The reasons for the global spread of SARS-CoV-2 may be the presence of numerous unidentified primary and secondary natural foci of the virus among animals living close to humans, the high transmissibility of the virus and its presymptomatic transmission. High transmissibility of SARS-CoV-2 is possible because: the binding energy of S1 protein of the virus with its receptor ACE2 is higher than that of viruses of closely related species; the virus penetrates into the endosomes of the cells more efficiently; because of the work of the replication-transcription complex, which counteracts the innate protective response of cells. The presymptomatic transmission of SARSCoV-2, which has become the main reason for the pandemic spread of SARS-CoV-2, is a consequence of the late detection of the virus by the innate immune system. Infected individual becomes contagious first, and then the specific symptoms of the disease appear. It is suggested in the article, that the COVID-19 pandemic is not an independent event caused by the emergence of a «new virus» (like one more flu pandemic), but a manifestation of a more complex and dangerous phenomenon, i.e. a change of the phase of the centuries-old global pandemic cycle, when, due to the increase in the density of immunodeficient populations weakened by various pathologies (chronic diseases, accumulation of genetic defects, aging, etc.) and aggravated social problems, non-cyclic pandemics and cyclical low-contagious epidemics are replaced by cyclical ones caused by highly contagious pathogens. SARS-CoV-2 is not the last in these events. The severe clinical course of COVID-19 is caused by such poorly understood phenomena as «imbalance» of renin–angiotensin–aldosterone system, cytokine storm, septic course of the disease, the patient`s genetic factors and immunopathology, developed during the infectious process (antibodydependent enhancement enhancement of infection, antigenic imprinting, antiphospholipid syndrome and other factors). Filling these «blank spots» will catalyze a research revolution in epidemiology and infectious pathology.
About the Author
M. V. SupotnitskiyRussian Federation
Mikhail Vasilyevich Supotnitskiy. Senior Researcher. Chief Specialist. Candidate of Biological Sciences.
Brigadirskii Lane 13, Moscow 105005
References
1. Supotnitskiy M.V. Novel coronavirus SARS-CoV-2 in the context of global epidemiology of coronavirus infections // Journal of NBC Protection Corps. 2019. V. 4. No 1. P. 32–65. https://doi.org/10.35825/2587-5728-2020-4-1-32-65 (in Russian)
2. Lu R., Zhao X., Li J. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // Published online January 29, 2020. https://doi.org/10.1016/S0140-6736(20)30251-8
3. Shchelkanov M.Yu., Popova A.Yu., Dedkov V.G. et al. History of investigation and current classification of coronaviruses (Nidovirales: Coronaviridae) // Russian Journal of Infection and Immunity. 2020. Vol. 10, №. 2. P. 221–246. http://doi.org/10.15789/2220-7619-HOI-1412 (in Russian).
4. van den Brand J., Smits S.L., Haagmans B.L. Pathogenesis of Middle East respiratory syndrome coronavirus // J. Pathol. 2015. V. 235. P. 175–184. https://doi.org/10.1002/path.4458
5. Malik Y.A. Properties of Coronavirus and SARSCoV-2 // Malaysian J. Pathol. 2020. V. 42(1). P. 3–11. 6. Donnelly C.A., Malik M.R., Elkholy A. et al. Worldwide Reduction in MERS Cases and Deaths since 2016 // Emerg. Infect. Dis. 2019. V. 25. P. 1758–1760. http://dx.doi.org/10.3201/eid2509.190143
6. Yan-Rong Guo, Qing-Dong Cao, Zhong-Si Hong et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status // Mil. Med. Res. 2020. V. 7(1). https://doi.org/10.1186/s40779-020-00240-0
7. Mohan S.M., Hemalatha M., Kopperi H. et al. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges // Chem. Eng. J. 2021. V. 405: P. 126893 https://doi.org/10.1016/j.cej.2020.126893
8. Abu A., Naqvia T., Fatimab K. et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach // Biochim. Biophys. Acta (BBA) - Molecular Basis of Disease. 2020. V. 1866, Is. 10. https://doi.org/10.1016/j.bbadis.2020.165878
9. Lau S.K., Li K.S., Huang Y. et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events // J. Virol. 2010. V. 84. P. 2808–2819. 11. Woo P.C., Lau S.K., Li K.S. et al. Genetic relatedness of the novel human group c betacoronavirus to tylonycteris bat coronavirus HKU4 and pipistrellus bat coronavirus HKU5 // Emerg. Microbes Infect. 2012. V. 1. https://doi.org/10.1038/emi.2012.45
10. Ge X-Y., Wang N., Zhang W. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft // Virologica Sinica. 2016. V. 31, № 1. P. 31–40. https://doi.org/10.1007/s12250-016-3713-9
11. Lau S.K.R., Luk H., Wong A.S.P. et al. Wong Identification of a Novel Betacoronavirus (Merbecovirus) in Amur Hedgehogs from China // Viruses. 2019. V. 11. 980. https://doi.org/10.3390/v11110980
12. Liu Z., Xiao X., Wei X. et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARSCoV-2 // J. Med. Virol. 2020. V. 92(6). P. 595–601. doi:10.1002/jmv.25726
13. Wu F., Zhao S., Yu B. et al. A new coronavirus associated with human respiratory disease in China // Nature. 2020. V. 579. P. 265–269. https://doi.org/10.1038/s41586-020-2008-3
14. Zhou P., Yang L.X., Wang G.X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. V. 579. P. 270–273. https://doi.org/10.1038/s41586-020-2012-7
15. Chavarria-Miró G., Anfruns-Estrada E., Guix S. et al. Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases // medRxiv preprint. 2020. June 13. doi: https://doi.org/10.1101/2020.06.13.20129627
16. van Dorp L., Richard D., Tan C. et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2 // bioRxiv preprint. Version posted May 21, 2020. https://doi.org/10.1101/2020.05.21.108506
17. Ge X-Y., Wang N., Zhang W. et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft // Virologica Sinica. 2016. V. 31, № 1. P. 31–40. https://doi.org/10.1007/s12250-016-3713-9
18. Latham J. A Proposed Origin for SARSCoV-2 and the COVID-19 Pandemic // Biotechnology, Commentaries. 2020. July 15, https://www.independentsciencenews.org/commentaries/aproposed-origin-for-sars-cov-2-and-the-covid-19-pandemic/
19. Shang J., Ye G., Shi K. et al. Structural basis of receptor recognition by SARS-CoV-2 // Nature. 2020. V. 581(7807), P. 221–224. https://doi.org/10.1038/s41586-020-2179-y
20. Zhou P., Yang X., Wang X. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. V. 579. P. 270–273. https://doi.org/10.1038/s41586-020-2012-7
21. Fracastoro J. About contagion and contagious diseases and treatment. In three books. Moscow. 1954. (in Russian)
22. Lecis R., Mucedda M., Pidinchedda E. et al. Molecular Identification of Betacoronavirus in Bats From Sardinia (Italy): First Detection and Phylogeny // Virus Genes. 2019. V. 55. P. 60–67. https://doi.org/10.1007/s11262-018-1614-8
23. Blangiardo M., Cameletti M., Pirani M. et al. Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 pandemic // PLOS. 2020. https://doi.org/10.1371/journal.pone.0240286
24. Corman V.M., Kallies R., Philipps H. et al. Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs // J. Virol. 2014. V. 88. P. 717–724
25. Monchatre-Leroy E., Boue F., Boucher J.M. et al. Identification of alpha and beta coronavirus in wildlife species in France: Bats, rodents, rabbits, and hedgehogs // Viruses. 2017. V. 9. № 12. P. 364. https://doi.org/10.3390/v9120364
26. Saldanha I.F., Lawson B., Goharriz H. et al. Extension of the known distribution of a novel clade C betacoronavirus in a wildlife host // Epidemiology and Infection. 2019. V. 147, e169. P. 1–8. https://doi.org/10.1017/S0950268819000207
27. Lau S.K.R., Luk H., Wong A.S.P. et al. Wong Identification of a Novel Betacoronavirus (Merbecovirus) in Amur Hedgehogs from China // Viruses. 2019. V. 11. P. 980. https://doi.org/10.3390/v11110980
28. Lee J., Hughes T., Lee M-H. et al. No evidence of coronaviruses or other potentially zoonotic viruses in Sunda pangolins (Manis javanica) entering the wildlife trade via Malaysia // bioRxiv preprint https://doi.org/10.1101/2020.06.19.158717
29. Andersen K.G., Rambaut A., Lipkin W.I. et al. The proximal origin of SARS-CoV-2 // Nature medicine. 2020. V. 26(4). P. 450–452. https://doi.org/10.1038/s41591-020-0820-9
30. Chu H., Fuk-Woo Chan J., Wang Y. et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19 // Clinical Infectious Diseases. 2020. V. 71, Is. 6, P. 1400–1409, https://doi.org/10.1093/cid/ciaa410
31. Piplani S., Singh P.K., Winkler D.A., Petrovsky N. In silico comparison of spike proteinACE2 binding affinities across species; significance for the possible origin of the SARS-CoV-2 virus // arXiv preprint arXiv. 2020. (https://www.researchgate.net/publication/341369358, дата обращения: 20.09.2020)
32. Ng K.K.F., Vane J.R., Conversion of Angiotensin I to Angiotensin II // Nature. 1967. V. 216(5117). P. 762– 766. https://doi.org/10.1038/216762a0
33. Putnam N., Butts T. Ferrier D.K.E. et al. The amphioxus genome and the evolution of the chordate karyotype // Nature. 2008. V. 453. P. 1064–1071. https://doi.org/10.1038/nature06967
34. Bernstein K.E, Ong F., Blackwell W-L. et al. Modern Understanding of the Traditional and Nontraditional Biological Functions of AngiotensinConverting Enzyme // Pharmacol. Rev. 2013. V. 65(1). P. 1–46. https://doi.org/10.1124/pr.112.006809
35. Sarah R., Tipnis A.R., Hooper N.M., Hyde R. et al. A Human Homolog of Angiotensin-converting Enzyme. Cloning and Functional Expression as a Captopril-Insensitive Carboxypeptidase // J. Biol. Chem. 2000. V. 275, No. 43. P. 33238–33243. https://doi.org/10.1074/jbc.M002615200
36. Cooper E.L. Comparative Immunology // Current Pharmaceutical Design. 2002. V. 8. P. 99–110. https://doi.org/10.1093/icb/25.3.649
37. Blazquez S., Zimmer C., Guigon G. et al. Human tumor necrosis factor is a chemoattractant for the parasite Entamoeba histolytica // Infect. Immun. 2006. V. 74, No. 2. P. 1407–1411.
38. Benavides-Montaño J.A., Vadyvaloo V. Yersinia pestis resists predation by Acanthamoeba castellanii and exhibits prolonged intracellular survival // Appl. Environ. Microbiol. 2017. V. 83, Issue 13. P. e00593-17. https://doi.org/10.1128/AEM.00593-17
39. Markman D.W., Antolin M.F., Bowen R.A. et. al. Yersinia pestis survival and replication in potential ameba reservoir // Emerging Infectious Diseases. 2018. V. 24, № 2. P. 294–302.
40. Cateau E., Delafont V., Hechard Y., Rodier M.Y. Free-living amoebae: what part do they play in healthcare-associated infections? // J. Hospital Infection. 2014. V. 83. P. 131–140. https://doi.org/10.1016/j.jhin.2014.05.001
41. Mattana A., Serra C., Mariotti E. et al. Acanthamoeba castellanii promotion of in vitro survival and transmission of coxsackie b3 viruses // Eukaryot. Cell. 2006. V. 5. P. 665–671.
42. Lorenzo-Morales J., Coronado-Alvarez N., Martinez-Carretero E. Valladares B. Detection of four adenovirus serotypes within water-isolated strains of Acanthamoeba in the Canary Islands, Spain // Am. J. Trop. Med. Hyg. 2007. V. 77. P. 753–756.
43. Scheid P., Schwarzenberger R. Acanthamoeba spp. as vehicle and reservoir of adenoviruses // Parasitol. Res. 2012. V.111(1). P. 479–485. https://doi.org/10.1007/s00436-012-2828-7
44. Hsueh T-Y., Gibson K.E. Interactions between Human Norovirus Surrogates and Acanthamoeba spp. // Appl Environ Microbiol. 2015. V. 81(12). P. 4005–4013. https://doi.org/10.1128/AEM.00649-15
45. Raoult D., Renesto P., Brouqui P. Laboratory infection of a technician by mimivirus // Ann. Intern. Med. 2006. V. 144. P. 702–703. https://doi.org/10.7326/0003-4819-144-9-200605020-00025
46. Folkins M.A., Dey R., Ashbolt N.J. Interactions between Human Reovirus and Free-Living Amoebae: Implications for Enteric Virus Disinfection and Aquatic Persistence // Environ. Sci. Technol. 2020. V. 54(16). P. 10201–10206. https://doi.org/10.1021/acs.est.0c02896
47. Yoshikawa G., Blanc-Mathieu R., Song C. et al. Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water // J. Virol. 2019. V. 93(8). P. e02130–e02118. https://doi.org/10.1128/JVI.02130-18
48. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor // Science. 2005. V. 309. P. 1864–1868. https://doi.org/10.1126/science.1116480
49. Gheblawi M., Wang K., Viveiros A. et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2 // Circ. Res. 2020. V. 126(10). P. 1456– 1474. https://doi.org/10.1161/CIRCRESAHA.120.317015
50. Wang K., Chen W., Zhou Y.-S. et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein // BioRxiv. 2020. https://doi.org/10.1101/2020.03.14.988345
51. Yurchenko V., Constant S., Bukrinsky M. Dealing with the family: CD147 interactions with cyclophilins // Immunology. 2006. V. 117(3). P. 301–309. https://doi.org/10.1111/j.1365-2567.2005.02316.x
52. Behloul N., Baha S., Shi R., Meng J. Role of the GTNGTKR motif in the N-terminal receptorbinding domain of the SARS-CoV-2 spike protein // Virus Res. 2020. V. 286: 198058. https://doi.org/10.1016/j.virusres.2020.198058
53. Coutard B., Valle C., Lamballerie X. et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade // Antiviral Res. 2020. V. 176. P. 104742. http://dx.doi.org/10.1016/j.antiviral.2020.104742
54. Lukassen S., Chua R., Trefzer T et al. SARS‐ CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells // EMBO J. 2020. V. 39(10): P. e105114. https://doi.org/10.15252/embj.20105114
55. Gubernatorovaa O., Gorshkovaabc E.E., Polinovaab A.I., Drutskayaa M.S. IL-6: Relevance for immunopathology of SARS-CoV-2 // Cytokine Growth Factor Rev. 2020. V. 53. P. 13–24. https://doi.org/10.1016/j.cytogfr.2020.05.009
56. Iwata-Yoshikawa N., Okamura T. Shimizu Y. et al. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection // J. Virol. 2019. V. 93(6). P. e01815– e01818. http://dx.doi.org/10.1128/JVI.01815-18
57. Rees V. Study finds activation sequence of COVID-19 S protein is cleaved by furin protease // Drug Target Review. 2020. 6 May 2020. https://www.drugtargetreview.com/news/61264/study-findsactivation-sequence-of-covid-19-s-protein-is-cleavedby-furin-protease/
58. Walls A.C., Park Y-G., Tortorici A.M. et al. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein // Cell. 2020. V. 181(2). P. 281– 292. e6. https://doi.org/10.1016/j.cell.2020.02.058
59. Hoffmann M., Kleine-Weber H., Pöhlmann S. A multibasic cleavage site in the spike protein of SARSCoV-2 is essential for infection of human lung cells // Mol. Cell. 2020. V. 78(4). P. 779–784.e5. http://dx.doi.org/10.1016/j.molcel.2020.04.022. Epub 2020 May 1.
60. Romano M., Ruggiero A., Squeglia F. et al. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping //Cells. 2020 May; 9(5): 1267. http://dx.doi.org/10.3390/cells9051267
61. Kandeel M., Ibrahim A., Fayez M., Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes // J. Med. Virol. 2020. V.92(6). P. 660–666. https://doi.org/10.1002/jmv.25754
62. Angeletti S., Benvenuto D., Bianchi M. et al. COVID‐2019: The role of the nsp2 and nsp3 in its pathogenesis // J. Med. Virol. 2020. 1–5. https://doi.org/10.1002/jmv.25719
63. Gadlage M.J., Graham R.L., Denison M.R. Murine Coronaviruses Encoding nsp2 at Different Genomic Loci Have Altered Replication, Protein Expression, and Localization // J. Virol. 2008 V. 82. P. 11964–11969. https://doi.org/10.1128/JVI.01126-07
64. Saikatendu K., Joseph J., Subramanian V. et al. Structural Basis of Severe Acute Respiratory Syndrome Coronavirus ADP-ribose-1''-phosphate Dephosphorylation by a Conserved Domain of nsP3 // Structure. 2005. V. 13. № 11. P. 1665–1675. https://doi.org/10.1016/j.str.2005.07.022
65. Lei J., Kusov Y., Hilgenfeld R. Nsp3 of Coronaviruses: Structures and Functions of a Large Multi-Domain Protein // Antiviral Res. 2018. V. 149. P. 58–74. https://doi.org/10.1016/j.antiviral.2017.11.001
66. Chan J., Lau S., To K.K.W. et al. Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease // Clin. Microbiol. Rev. 2015. V. 28(2): P. 465–522. https://doi.org/10.1128/CMR.00102-14
67. Kai-Wang To E., Tak‐Yin Tsang O., Leung W-S. et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study // Lancet Infect. Dis. 2020. V. 20, Is. 5. P. 565–574. https://doi.org/10.1016/S1473-3099(20)30196-1
68. Chu H., Fuk-Woo Chan J., Wang Y. et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19 // Clin. Infect. Dis. 2020. V. 71, Is. 6, P. 1400–1409, https://doi.org/10.1093/cid/ciaa410
69. Hui K.P.Y., Cheung M-C., Perera R. et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in exvivo and in-vitro cultures // Lancet Respir. Med. 2020 V. 8(7). P. 687–695. https://doi.org/10.1016/S2213-2600(20)30193-4
70. Wang Y., Wang Y., Chen Y. et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures // J. Med. Virol. 2020. V. 92. P. 568–576. https://doi.org/10.1002/jmv.25748
71. Wei W., Li Z., ChiewC.J. et al. Presymptomatic Transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020 // MMWR Morb Mortal Wkly Rep. 2020. V. 69(14). P. 411–415. https://doi.org/10.15585/mmwr.mm6914e1
72. Stawicki S.P., Jeanmonod R., Miller A.C. et al. The 2019–2020 Novel Coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2) Pandemic: A Joint American College of Academic International Medicine-World Academic Council of Emergency Medicine Multidisciplinary COVID-19 Working Group Consensus Paper // J. Glob. Infect. Dis. 2020V. 12(2). P. 47–93. https://doi.org/10.4103/jgid.jgid_86_20
73. Masaaki Miyazawa. Immunopathogenesis of SARS-CoV-2-induced pneumonia: lessons from influenza virus infection // Inflamm. Regen. 2020. V. 40. P. 39. https://doi.org/10.1186/s41232-020-00148-1
74. Huang L., Zhang X., Zhang X. et al. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study // J. Infect. 2020. V. 80. e1–e13. https://doi.org/10.1016/j.jinf.2020.03.006
75. Long Q-X., Tang X-J., Shi Q-J. et al. Clinical and immunological assessment of asymptomatic SARSCoV-2 infections // Nature Medicine. 2020. V. 26. P. 1200–1204. https://doi.org/10.1038/s41591-020-0965-6
76. Liu Y., Gayle A.A., Wilder-Smith A.,Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus // J. Travel. Med. 2020. V. 27(2). https://doi.org/10.1093/jtm/taaa021
77. Sanche S., Lin E.T., Xu C. et al. High Contagiousness and RapidSpread of Severe Acute Respiratory Syndrome Coronavirus 2 // Emerg. Infect. Dis. 2020. V. 26, № 7, P. 1470–1477. https://doi.org/10.3201/eid2607.200282
78. Borisevich S.V., Sizikova Т.Е., Lebedev V.N. COVID-19 Pandemic: Analysis of Possible Scenarios for the Development of the Epidemic in Russia // Journal of NBC Protection Corps. 2020. V. 4. No 2. P. 116-130. https://doi.org/10.35825/2587-5728-2020-4-2-116-130 (in Russian)
79. Supotnitsky M.V. Microorganisms, toxins and epidemics. Moscow: 2000 (in Russian).
80. Supotnitsky M.V. Evolutionary pathology. On the question of the place of HIV infection and HIV/ AIDS pandemic among other infectious, epidemic and pandemic processes. Moscow: 2009 (in Russian).
81. Sasaki Y., Nomura A., Kusuhara K. et al. Genetic basis of patients with bacille Calmette-Guerin osteomyelitis in Japan: identification of dominant partial interferon-γ receptor 1 deficiency as a predominant type // J. Infect. Dis. 2002. V. 185. P. 706–709. https://doi.org/10.1086/339011
82. Newport M., Huxley C., Huston S. et al. A mutation in the interferon-g-receptor gene and susceptibility to mycobacterial infection // N. Engl. J. Med. 1996. V. 335. P. 1941–1949. https://doi.org/10.1056/NEJM199612263352602
83. Jouanguy E., Lamhamedi-Cherradi S., Lammas D. et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection // Nat. Genet. 1999. V. 21. P. 370–378. https://doi.org/10.1038/7701
84. Dorp L., Acman M., Richard D. et al., Emergence of genomic diversity and recurrent mutations in SARSCoV-2. Infection, genetics and evolution // Infect. Genet. Evol. 2020. V. 83. 104351. https://doi.org/10.1016/j.meegid.2020.104351
85. Melenotte C., Silvin A., Goubet A-G., Lahmar I. Immune responses during COVID-19 infection // Oncoimmunology. 2020. V. 9(1): 1807836. . https://doi.org/10.1080/2162402X.2020.1807836
86. Devaux Ch., Rolain J-M., Raoulta D. et al. ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome // J. Microbiol. Immunol. Infect. 2020. V. 53(3). P. 425–435. https://doi.org/10.1016/j.jmii.2020.04.015
87. Vepa A., Bae J.P., Ahmed F. et al. COVID-19 and ethnicity: A novel pathophysiological role for inflammation // Diabetes Metab. 2020. V. 14(5). P. 1043– 1051. https://doi.org/10.1016/j.dsx.2020.06.056
88. Pana D., Szec S., Minhasc J.S. et al. The impact of ethnicity on clinical outcomes in COVID-19: A systematic review // Clinical. Medicine. 2020. V. 23. 100404. https://doi.org/10.1016/j.eclinm.2020.100404
89. Millett G.A., Jones A.T., Benkeser D. et al. Assessing Differential Impacts of COVID-19 on Black Communities // Ann. Epidemiol. 2020. V. 44. https://doi.org/10.1016/j.annepidem.2020.05.003
90. Labò N., Ohnuki H., Tosato G. Vasculopathy and Coagulopathy Associated with SARS-CoV-2 Infection // Cells. 2020 Jul; 9(7): 1583. https://doi.org/10.3390/cells9071583
91. Giudicessi G.R., Roden D.M Wilde A.A.M., Ackerman M.J. Genetic susceptibility for COVID-19– associated sudden cardiac death in African Americans // Heart Rhythm. 2020. V. 9. P. 1487–1492. https://doi.org/10.1016/j.hrthm.2020.04.045
92. Ovsyannikova I.G., Haralambieva I.N., Crooke S.N. et al. The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity // Immunol. Rev. 2020. V. 296. P. 205–219. https://doi.org/10.1111/imr.12897
93. Pacurar M., Kafoury R., Tchounwou P. et al. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling // Int. J. Inflam. 2014. 689360. https://doi.org/10.1155/2014/689360
94. Datta P.K. Liu F. Fischer F. et al. SARSCoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy // Theranostics. 2020. V. 10(16). P. 7448–7464. https://doi.org/10.7150/thno.48076
95. Mahmudpour M., Roozbeh J., Keshavarz M. et al. COVID-19 cytokine storm: The anger of inflammation // Cytokine. 2020. V. 133:155151. https://doi.org/10.1016/j.cyto.2020.155151
96. Lu H., Cassis L., Craig W. et al. Structure and functions of angiotensinogen // Hypertension Res. 2016. V. 39 (7). P. 492–500. https://doi.org/10.1038/hr.2016.17
97. Vickers Ch., Hales P., Kaushik V/ et al. Hydrolysis of biological peptides by human angiotensinconverting enzyme-related carboxypeptidase // J. Biol. Chem. 2002. V. 277(17). P. 14838–14843. https://doi.org/10.1074/jbc
98. Povlsen A.L., Grimm D., Wehland M. et al. The Vasoactive Mas Receptor in Essential Hypertension // J. Clin. Med. 2020, V. 9(1), 267; https://doi.org/10.3390/jcm9010267
99. Cheng H., Wang Y., Wang G-Q. Organ‐ protective effect of angiotensin‐converting enzyme 2 and its effect on the prognosis of COVID‐19 // J. Med. Virol. 2020. V. 92(7). P. 726–730. https://doi.org/10.1002/jmv.25785
100. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic // Eur. J. Hum. Genet. 2020. V. 28(6). P. 715–718. https://doi.org/10.1038/s41431-020-0636-6
101. Anastassopoulou C., Gkizarioti Z., Patrinos G.P., Tsakris A. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity // Hum. Genomics. 2020. V. 14(1). P. 40. https://doi.org/10.1186/s40246-020-00290-4
102. Malard L., Kakinami L., O'Loughlin J. et al. The association between the angiotensin-converting enzyme-2 gene and blood pressure in a cohort study of adolescents // BMC Med. Genet. 2013. V. 14. https://doi.org/10.1186/1471-2350-14-117
103. Crackower M.A., Sarao R., Oudit G.Y. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function // Nature. 2002. V. 417. P. 822–828. https://doi.org/10.1038/nature00786
104. Velkoska E., Patel S.K., Burrell L.M. Angiotensin converting enzyme 2 and diminazene: role in cardiovascular and blood pressure regulation // Curr. Opin. Nephrol. Hypertens. 2016. V. 25. P. 384–395. https://doi.org/10.1097/MNH.0000000000000254
105. Pinheiro D.S., Santos R.S., Veiga Jardim P.C.B. et al. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: a genetic association study in Brazilian patients // PLoS One. 2019. V. 14(8): e0221248. https://doi.org/10.1371/journal.pone.0221248
106. Duru K., Farrow S., Wang J.M. et al. Frequency of a deletion polymorphism in the gene for angiotensin converting enzyme is increased in african-Americans with hypertension // Am. J. Hypertens. 1994. V. 7(8). P. 759–762. https://doi.org/10.1093/ajh/7.8.759
107. Stawiski E.W., Diwanji D., Suryamohan K. et al. Human ACE2 receptor polymorphisms predict SARS‐CoV‐2 susceptibility // bioRxiv. 2020. https://doi.org/10.1101/2020.04.07.024752
108. Zhao Y., Zhao Z., Wang Y. et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov // BioRxiv. 2020. Jan. 26. https://doi.org/10.1101/2020.01.26.919985
109. Poston J.T., Patel B.K., Davis A.M. Management of Critically Ill Adults with COVID-19 // JAMA. 2020. V. 323(18). P. 1839–1841. https://doi.org/10.1001/jama.2020.4914
110. Oppenheim J.J., Yang D. Alarmins: chemotactic activators of immune responses // Curr. Opin. Immunol. 2005. V. 17, № 4. P. 359–365. https://doi.org/10.1016/j.coi.2005.06.002
111. Bushmanova G.M., Supotnitsky M.V. The COVID-19 pandemic is one of the components of the multicomponent pandemic of the 21st century // J. Cardiovasc. Med. Cardiol. 2020. V. 7(2). P. 195–200. https://orcid.org/0000-0002-5012-5608
112. Karnaushkina M.A., Averyanov A.V., Lesnyak V.N. Ground glass opacities on KT of the chest in the practice of the clinician: pathogenesis, significance, differential diagnose. clinical observation // The Russian Archives of Internal Medicine. 2018. V. 8(3). P. 165-175. https://dx.doi.org/10.20514/2226-6704-2018-8-3-165-175 (In Russian).
113. Bushmanova G.M., Supotnitskiy M.V., Churin B.V. Primary chronic septic endocarditis as an alternative to acute rheumatic fever - the obligate component of the multicomponent noncyclic pandemic of the 21 st Century // J. Cardiovasc. Med. Cardiol. 2020. V. 7(3). P. 242–248. https://dx.doi.org/10.17352/2455-2976.000146
114. Bushmanova G.M., Zorina I.G., Terletskiy A.V., Akhmerova L.T. «New» clinical phenomenon of XXXXI centuries – primary chronic septic endocarditis as an argument against the diagnosis of «rheumatism» // Therapy. 2020. V. 2. P. 34–45. https://dx.doi.org/10.18565/therapy.2020.2.34-45 (in Russian).
115. Karthik K., Senthilkumar T.M.A., Udhayavel S., Rajc G.D. Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19 // Hum. Vaccin. Immunother. 2020. P. 1–6. https://doi.org/10.1080/21645515.202
116. Zaichuk T.A., Nechipurenko Yu.D., Adjubey A.A. Problems of creating vaccines against betacoronaviruses: antibody-dependent intensification of infection and Sendai virus as a possible vaccine vector // Molecular Biology. 2020.Vol. 54, No. 6. P. 922–938. https://doi.org/10.31857/S0026898420060154 (in Russian)
117. Yip M.S., Leung N.H.L., Cheung C.Y. et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus // Virol. J. 2014. V. 11. 82 p. https://doi.org/10.1186/1743-422X-11-82
118. Jaume M., Yip M.S., Cheung C.Y. et al. AntiSevere Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcR Pathway // J. Virol. 2011. V. 85, № 20. P. 10582–10597. https://doi.org/doi:10.1128/JVI.00671-11
119. Gao W., Tamin A., Soloff A. et al. Effects of a SARS-associated coronavirus vaccine in monkeys // Lancet. 2003. V. 362(9399). P. 1895–1896. https://doi.org/10.1016/S0140-6736(03)14962-8
120. Moore J.P., Klasse P.J. COVID-19 Vaccines: “Warp Speed” Needs Mind Melds, Not Warped Minds // J. Virol. 2020. V. 94(17). P. e01083-20. https://doi.org/10.1128/JVI.01083-20
121. Wang Q., Zhang L., Kuwahara K. et al. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates // ACS Infect. Dis. 2016. V. 2(5). P. 361–376. https://doi.org/10.1021/acsinfecdis.6b00006
122. Wec A.Z., Wrapp D., Herbert A.S. et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies // Science. 2020. V. 369(6504). P. 731–736. https://doi.org/10.1126/science.abc7424
123. Su S., Du L., Jiangcorresponding S. Learning from the past: development of safe and effective COVID-19 vaccines // Nat. Rev Microbiol. 2020. 1–9. https://doi.org/doi:10.1038/s41579-020-00462-y
124. Zhang B., Zhou X., Zhu C. et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19 // Front. Mol. Biosci. 2020. V. 7. 157. https://doi.org/10.3389/fmolb.2020.00157
125. Tetro J.A. Is COVID-19 receiving ADE from other coronaviruses? // Microbes Infect. 2020. V. 22(2). P. 72–73. https://doi.org/10.1016/j.micinf.2020.02.006
126. Monto A.S., Malosh R.E., Petrie J.G., Martin E.T. The doctrine of original antigenic sin: separating good from evil // J. Infect. Dis. 217. V. 215. P. 1782‒1788. https://doi.org/10.1093/infdis/jix173
127. Kim J.H., Skountzou I., Compans R., Jacob J. Original antigenic sin responses to influenza viruses // J. Immunol. 2009. V. 183. P. 3294–301. https://doi.org/10.4049/jimmunol.0900398
128. Supotnitsky M.V. Blind spots of vaccinology. Moscow: 2006. (in Russian).
129. Zuo Y., Estes S., Ali R.A. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19// Sci Transl Med. 2020. eabd3876. https://doi.org/10.1126/scitranslmed.abd3876
130. Bastard P., Rosen L.B., Zhang Q. et al. Autoantibodies against type I IFNs in patients with lifethreatening COVID-19 // Science. 2020. V. 370, Is. 6515., eabd4585. https://doi.org/10.1126/science.abd4585
Review
For citations:
Supotnitskiy M.V. COVID-19 Pandemic as an Indicator of «Blank Spots» in Epidemiology and Infectious Pathology. Journal of NBC Protection Corps. 2020;4(3):338-373. (In Russ.) https://doi.org/10.35825/2587-5728-2020-4-3-338-373. EDN: ltdlxr