Strategy for Development of Modern Protective Equipment Based on Organometallic Complexes with Desired Properties
https://doi.org/10.35825/2587-5728-2020-4-3-305-337
EDN: ujyeyl
Abstract
The aim of this review is to analyze the existing approaches to the creation and the improvement of materials and fabrics based on metal-organic frameworks (MOFs), which can be the basis for developing a strategy for creating modular MOF materials for modern personal protective equipment (PPE) against toxic chemicals and pathogenic microorganisms. The review provides the details of the use of biomolecules for integration with MOF by pore encapsulation, surface attachment, covalent binding, in situ encapsulation of biomolecules in MOF, and the creation of bio-MOFs. The characteristics of biomolecules that can be included in MOFs are presented. Certain schemes for the inclusion of some biomolecules in MOFs are given. The main properties of MOFs, the main trends of their creation, as well as the most promising directions of application of biomolecules/MOF composites are discussed. The strategy of the creation of modular MOF materials with desired properties for modern PPE, that provide protection against various hazards of chemical, biological and physical nature, is presented. The main trends of the development of modern PPE based on modular MOF materials with desired properties are given. Particular schemes of the creation of separate modules in MOF structures, as well as the determination of their importance and significance for imparting universal protective properties to MOF materials are proposed.
About the Authors
V. V. ZavyalovRussian Federation
Vasily Vladimirovich Zavyalov. Senior Researcher. Candidate of Chemical Sciences. Professor of the Academy of Military Sciences.
Brigadirskii Lane 13, Moscow 105005
N. V. Zavyalova
Russian Federation
Natalya Vasilyevna Zavyalova. Leading Researcher. Doctor of Biological Sciences, Professor. Academician of the Academy of Military Sciences.
Brigadirskii Lane 13, Moscow 105005
V. I. Kholstov
Russian Federation
Viktor Ivanovich Kholstov. Member of the Dissertation Council of the 27 Scientific Centre of the Ministry of Defence of the Russian Federation. Doctor of Chemical Sciences, Professor. Honored Chemist of the Russian Federation. Academician of the Russian Academy of Natural Sciences and the Academy of Military Sciences. Corresponding Member of the Russian Academy of Sciences and the Russian Academy of Rocket and Artillery Sciences.
Brigadirskii Lane 13, Moscow 105005
V. K. Gorelenkov
Russian Federation
Valentin Konstantinovich Gorelenkov. Leading Researcher. Doctor of Chemical Sciences, Professor.
Perovsky Passage 2, Moscow 111024
G. A. Frolov
Russian Federation
George Alexandrovich Frolov. Candidate of Chemical Sciences, Associate Professor.
Leninsky Avenue 4, Moscow 119049
I. V. Lyagin
Russian Federation
Ilya Vladimirovich Lyagin. Senior Researcher. Candidate of Chemical Sciences.
Lenin Hills 1-3, Moscow 119991
E. N. Efremenko
Russian Federation
Elena Nikolayevna Efremenko. Laboratory Chief. Doctor of Biological Sciences, Professor.
Lenin Hills 1-3, Moscow 119991
References
1. Organophosphorus Neurotoxins: monograph / Eds. Professor S.D. Varfolomeev & Professor E.N. Efremenko. Мoscow: RIOR, 2020. 380 p. ISBN: 978-5-369-02026-5. https://doi.org/10.29039/02026-5 (in Russian).
2. Khalil E. A technical overview on protective clothing against chemical hazards // AASCIT J. Chemistry. 2015. V. 2. № 3. P. 67–76. https://doi.org/10.6084/M9.FIGSHARE.1435935
3. Zavialov V.V., Kujelko S.V., Zavialova N.V. et al. Modern directions of creating new protective materials and tissues for means of individual and collective protection against toxic chemicals and pathogenic microorganisms // Journal of NBC Protection Corps. 2019. V. 3. № 3. P. 217– 254. https://doi.org/10.358.25/2587-5728-2019-3-3-217-254
4. Soldier systems technology roadmap / Сapstone report and action plan / Supporting the future soldier supporting Canadian industry. Government of Canada. URL: https://www.defenceandsecurity.ca/UserFiles/Uploads/publication/reports/files/document-10.pdf (дата обращения: 25.12.2018).
5. Sloter L. Overview of nanotechnology nanomanufacturing within the Department of defense. American Vacuum Society International Symposium and Exhibition Baltimore, Maryland. USA. 2014. URL: https://avs.org/AVS/files/d3/d388692a-70b1-472dbec6-44df3b06126e.pdf
6. Tomar S. Nanotechnology: the emerging field for future military applications. IDSA Monograph Series No. 48. 2015. ISBN: 978-93-82169-58-1.
7. Snakes and ladders – Brazil’s COBRA future soldier programme. 2014. URL: https://www.defence-andsecurity.com/features/featuresnakes-and-ladders-brazilscobra-4483929/
8. An H., Li M., Gao J. et al. Incorporation of biomolecules in metal-organic frameworks for advanced applications // Coord. Chem. Rev. 2019. V. 384. P. 90–106. https://doi.org/10.1016/j.ccr.2019.01.001
9. Li M., Li D., O’Keeffe M., Yaghi O.M. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle // Chem. Rev. 2014. V. 114. № 2. P. 1343–1370. https://doi.org/10.1021/cr400392k
10. Lee Y.-R., Kim J., Ahn W.-S. Synthesis of metalorganic frameworks: a mini review // Korean J. Chem. Eng. 2013. V. 30. № 9. P. 1667–1680. https://doi.org/10.1007/s11814-013-0140-6
11. Bobbitt N.S., Mendonca M.L., Howarth A.J. et al. Metal-organic frameworks for removal of toxic industrial chemicals and chemical warfare agents // Chem. Soc. Rev. 2017. V. 46. № 11. P. 3357–3385. https://doi.org/10.1039/C7CS00108H
12. Gutov O.V., Bury W., Gomez-Gualdron D.A. et al. A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities // Chem.-Eur. J. 2014. V. 20. № 39. P. 12389–12393. https://doi.org/10.1002/chem.201402895
13. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The chemistry and applications of metalorganic frameworks // Science. 2013. V. 341. № 6149. e12340444. https://doi.org/10.1126/science.1230444
14. Project final report № 228604 Nanoporous metal-organic frameworks for production (nano MOF). FP7-NMP-2008-LARGE-2 Project's coordinator: Dr. Wulf Grählert, Fraunhofer IWS. (01/06/1009-30/05/ 2013). URL: https://cordis.europa.eu/docs/results/228604/final1-nanomof-finai-report-final.pdf (дата обращения: 25.12.2018)
15. USA Patent № 8647419 В2 (2014).
16. Howarth A.J., Liu Y., Li P. et al. Chemical, thermal and mechanical stabilities of metal-organic fameworks // Nat. Rev. Mater. 2016. V. 1. P. e15018. https://doi.org/10.1038/natrevmats.2015.18
17. De Coste J.B., Peterson G.W. Metal-organic frameworks for air purification of toxic chemicals // Chem. Rev. 2014. V. 114. № 11. P. 5695–5727. https://doi.org/10.1021/cr4006473
18. Planas N., Mondloch J.E., Tussupbayev S. et al. Defining the proton topology of the Zr6-based metalorganic framework NU-1000 // J. Phys. Lett. 2014. V. 5. № 21. P. 3716–3723. https://doi.org/10.1021/jz501899j
19. Lopes-Maya E., Montoro C., Rodrigues-Albelo L.M. et al. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents // Angew. Chem. Int. Edit. 2015. V. 54. № 23. P. 6790–6794. https://doi.org/10.1002/anie.201502094
20. Moon S-Y., Liu Y., Hupp J.T., Farha O.K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework // Angew. Chem. Int. Edit. 2015. V. 54. № 23. P. 6795–6799. https://doi.org/10.1002/anie.201502155
21. Vemuri R.S., Armatis P.D., Bontha J.R. et al. An overview of detection and neutralization of chemical warfare agents using metal organic frameworks // J. Bioterror. Biodef. 2015. V. 6. № 3. P. e137. https://doi.org/10.4172/2157-2526.1000137
22. Ahmed T., Imdad S., Yaldram K. et al. Emerging nanotechnology-based methods for water purification: a review // Desal. Water Treat. 2013. V. 52. № 22-24. P. 4089– 4101. https://doi.org/10.1080/19443994.2013.801789
23. Alongi J., Tata J., Carosio F. et al. A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics // Polymers. 2015. V. 7. № 1. P. 47–68. https://doi.org/10.3390/polym7010047
24. Bhuiyan M.A.R., Wang L., Shaid A. et al. Advances and application of chemical protective clothing system // J. Ind. Text. 2019. V. 49. № 1. P. 97–138. https://doi.org/10.1177/1528083718779426
25. Ramaratnam K., Iyer S.K., Kinnan M.K. et al. Ultrahydrophobic textiles using nanoparticles: lotus approach // J. Eng. Fiber. Fabr. 2008. V. 3. № 4. https://doi.org/10.1177/155892500800300402
26. Qi K., Wang X., Xin J.H. Photocatalytic selfcleaning textiles based on nanocrystalline titanium dioxide // Text. Res. J. 2011. V. 81. № 1. P. 101–110. https://doi.org/10.1177/0040517510383618
27. Ugur Ş.S., Sariişik M., Aktaş A.H. The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics // Nanotechnology. 2010. V. 21. № 32. P. e325603. https://doi.org/10.1088/0957-4484/21/32/325603
28. Navale G.R., Thripuranthaka M., Late D.J., Shinde S.S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi // JSM Nanotechnol. Nanomed. 2015. V. 3. № 1. P. e1033. https://www.jscimedcentral.com/Nanotechnology/nanotechnology-3-1033.pdf
29. Pei Z., Ma X., Ding P. et al. Study of a QCM dimethyl methylphosphonate sensor based on a ZnO- modified nanowire-structured manganese dioxide film // Sensors (Basel). 2010. V. 10. № 9. P. 8275–8290. https://dx.doi.org/10.3390/s100908275
30. Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacteral activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms // FEMS Microbiol. Lett. 2018. V. 279. № 1. P. 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
31. Smiechowicz E., Niecraszewicz B., Kulpinski P., Dzitko K. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica // Cellulose. 2018. V. 25. № 6. P. 3499–3517. https://doi.org/10.1007/s10570-018-1796-1
32. Gold K., Slay B., Knachstedt M., Gaharwar A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles // Adv. Ther. 2018. V. 1. № 3. P. e1700033. https://doi.org/10.1002/adtp.201700033
33. Xie Y., He Y., Irwin P.L. et al. Antibacterial activity and mechanism of action zinc oxide nanoparticles against Campylobacter jejuni // Appl. Environ. Microbiol. 2011. V. 77. № 7. P. 2325–2331. https://doi.org/10.1128/AEM.02149-10
34. USA Patent № 7534453 B1 (2009).
35. Shcherbakov А.B., Zholobak N.М., Ivanov V.К. et al. Nanomaterials based on the nanocrystalline ceria: properties and use perspectives in biology and medicine // Biotechnology. 2011. V 4. № 1. P. 9–28 (in Russian).
36. Ravikumar S., Gokulakrishnan R. The inhibitory effect of metal oxide nanoparticles against poultry pathogens // Int. J. Pharm. Sci. Drug Res. 2012. V. 4. № 2. P. 157–159.
37. Gordon W.O. Metal oxide nanoparticles: optical properties and interaction with chemical warfare agent simulants. Dis. Ph.D. Blacksburg, Virginia, USA. 2006.
38. Doskocz N., Zaleska-Radziwill M. Effects of zirconium oxide nanoparticles on bacterial growth // PhD Interdiscipl. J. 2015. № 1. P. 161–166.
39. Kim S., Ying W.B., Jung H. et al. Zirconium hydroxide-coated nanofibers mats for nerve agent decontamination // Chem. Asian J. 2017. V. 12. № 6. P. 698– 705. https://doi.org/10.1002/asia.201601729
40. Prasad S., Roy I. Converting Enzymes into tools of industrial importance // Recent Pat. Biotechnol. 2018. V. 12. № 1. P. 33–56. https://doi.org/10.2174/1872208311666170612113303
41. Lei Z., Gao C., Chen L. et al. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates // J. Mater. Chem. B. 2018. V. 6. № 11. P. 1581–1594. https://doi.org/10.1039/C7TB03310A
42. Nguyen H.H., Kim M. An overview of techniques in enzyme immobilization // Appl. Sci. Converg. Technol. 2017. V. 26. № 6. P. 157–163. https://doi.org/10.5757/ASCT.2017.26.6.157
43. Hartmann M., Kostrov X. Immobilization of enzymes on porous silicas – benefits and challenges // Chem. Soc. Rev. 2013. V. 42. № 15. P. 6277–6289. https://doi.org/10.1039/C3CS60021A
44. Magner E. Immobilisation of enzymes on mesoporous silicate materials // Chem. Soc. Rev. 2013. V. 42. № 15. P. 6213–6222. https://doi.org/10.1039/C2CS35450K
45. Hudson S., Cooney J., Magner E. Proteins in mesoporous silicates // Angew. Chem. Int. Edit. 2008. V. 47. № 45. P. 8582–8594. https://doi.org/10.1002/anie.200705238.
46. Kumar S., Kumar D., Ahirwar R., Nahar P. Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation // Anal. Bioanal. Chem. 2016. V. 408. № 25. P. 6945–6956. https://doi.org/10.1007/s00216-016-9803-6
47. Jiang H., Xu F.-J. Biomolecule-functionalized polymer brushes // Chem. Soc. Rev. 2013. V. 42. № 8. P. 3394–3426. https://doi.org/10.1039/c2cs35453e
48. Nelson J., Griffin E.G. Adsorption of invertase // J. Am. Chem. Soc. 1916. V. 38. № 5. P. 1109–1115. https://doi.org/10.1021/ja02262a018
49. Lian X., Fang Y., Joseph E. et al. Enzyme-MOF (metal-organic framework) composites // Chem. Soc. Rev. 2017. V. 46. № 11. P. 3386–3401. https://doi.org/10.1039/c7cs00058h
50. Torres-Salas P., del Monte-Martinez A., CutinoAvila B. et al. Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports // Adv. Mater. 2011. V. 23. № 44. P. 5275–5282. https://doi.org/10.1002/adma.201101821
51. Li B., Wen H.-M., Cui Y. et al. Emerging multifunctional metal-organic framework materials // Adv. Mater. 2016. V. 28. № 40. P. 8819–8860. https://doi.org/10.1002/adma.201601133
52. Nandasiri M.I., Jambovane S.R., McGrail B.P. et al. Adsorption, separation, and catalytic properties of densified metal-organic frameworks // Coord. Chem. Rev. 2016. V. 311. P. 38–52. https://doi.org/10.1016/j.ccr.2015.12.004
53. Cui Y., Li B., He H. et al. Metal-organic frameworks as platforms for functional materials // Acc. Chem. Res. 2016. V. 49. № 3. P. 483–493. https://doi.org/10.1021/acs.accounts.5b00530
54. Zhu Q.-L., Xu Q. Metal-organic framework composites // Chem. Soc. Rev. 2014. V. 43. № 16. P. 5468– 5512. https://doi.org/10.1039/c3cs60472a
55. Meek S.T., Greathouse J.A., Allendorf M.D. Metalorganic frameworks: a rapidly growing class of versatile nanoporous materials // Adv. Mater. 2011. V. 23. № 2. P. 249–267. https://doi.org/10.1002/adma.201002854
56. Zhou H.-C., Long J.R., Yaghi O.M. Introduction to metal-organic frameworks // Chem. Rev. 2012. V. 112. № 2. P. 673–674. https://doi.org/10.1021/cr300014x
57. Xu M., Yang S.-S., Gu Z.-Y. Two-dimensional metal-organic framework nanosheets: a rapidly growing class of versatile nanomaterials for gas separation, MALDITOF matrix and biomimetic applications // Chem.-Eur. J. 2018. V. 24. № 57. P. 15131–15142. https://doi.org/10.1002/chem.201800556
58. Li S., Dharmarwardana M., Welch R.P. et al. Template-directed synthesis of porous and protective core-shell bionanoparticles // Angew. Chem. Int. Edit. 2016. V. 55. № 36. P. 10691–10696. https://doi.org/10.1002/anie.201604879
59. Anderson S.L., Stylianou K.C. Biologically derived metal organic frameworks // Coord. Chem. Rev. 2017. V. 349. P. 102–128. http://dx.doi.org/10.1016/j.ccr.2017.07.012
60. Gkaniatsou E., Sicard C., Ricoux R. et al. Metalorganic frameworks: a novel host platform for enzymatic catalysis and detection // Mater. Horiz. 2017. V. 4. № 1. P. 55–63. https://doi.org/10.1039/C6MH00312E
61. Zhuang J., Young A.P., Tsung C.-K. Integration of biomolecules with metal-organic frameworks // Small. 2017. V. 13. № 32. P. e1700880. https://doi.org/10.1002/smll.201700880
62. Mehta J., Bhardwaj N., Bhardwaj S.K. et al. Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates // Coord. Chem. Rev. 2016. V. 322. P. 30–40. https://doi.org/10.1016/j.ccr.2016.05.007
63. Cui J., Ren S., Sun B., Jia S. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: current development and future challenges // Coord. Chem. Rev. 2018. V. 370. P. 22–41. https://doi.org/10.1016/j.ccr.2018.05.004
64. Zhu X., Zheng H., Wei X. et al. Metal-organic framework (MOF): a novel sensing platform for biomolecules // Chem. Commun. 2013. V. 49. № 13. P. 1276– 1278. https://doi.org/10.1039/c2cc36661d
65. Wang Q., Lian X., Fang Y., Zhou H.-C. Applications of immobilized bio-catalyst in metal-organic frameworks // Catalysts. 2018. V. 8. № 4. P. e166. https://doi.org/10.3390/catal8040166
66. Wu X., Hou M., Ge J. Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization // Catal. Sci. Technol. 2015. V. 5. № 12. P. 5077–5085. https://doi.org/10.1039/C5CY01181G
67. Chen L., Luque R., Li Y. Controllable design of tunable nanostructures inside metal-organic frameworks // Chem. Soc. Rev. 2017. V. 46. № 15. P. 4614–4630. https://doi.org/10.1039/c6cs00537c
68. Pang S., Wu Y., Zhang X. et al. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF // Process Biochem. 2016. V. 51. № 2. P. 229–239. https://doi.org/10.1016/j.procbio.2015.11.033
69. Lian X., Chen Y.-P., Liu T.-F., Zhou H.-C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF // Chem. Sci. 2016. V. 7. № 12. P. 6969–6973. https://doi.org/10.1039/c6sc01438k.
70. Lian X., Huang Y., Zhu Y. et al. Enzyme-MOF Nanoreactor activates nontoxic paracetamol for cancer therapy // Angew. Chem. Int. Edit. 2018. V. 57. № 20. P. 5725–5730. https://doi.org/10.1002/anie.201801378
71. Patra S., Crespo T.H., Permyakova A. et al. Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform // J. Mater. Chem. B. 2015. V. 3. № 46. P. 8983–8992. https://doi.org/10.1039/c5tb01412c
72. Lykourinou V., ChenY., Wang X.-S. et al. Immobilization of MP-11 into a mesoporous metalorganic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis // J. Am. Chem. Soc. 2011. V. 133. № 27. P. 10382–10385. https://doi.org/10.1021/ja2038003
73. Feng D., Liu T.-F., Su J. et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation // Nat. Commun. 2015. V. 6. P. e5979. https://doi.org/10.1038/ncomms6979
74. Lian X., Erazo-Oliveras A., Pellois J.-P., Zhou H.-C. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metalorganic frameworks // Nat. Commun. 2017. V. 8. P. e2075. https://doi.org/10.1038/s41467-017-02103-0
75. Wang C., Gao J., Tan H. Integrated antibody with catalytic metal-organic framework for colorimetric immunoassay // ACS Appl. Mater. Interfaces. 2018. V. 10. № 30. P. 25113–25120. https://doi.org/10.1021/acsami.8b07225
76. Bhardwaj S.K., Bhardwaj N., Mohanta G.C. et al. Immunosensing of atrazine with antibody-functionalized Cu-MOF conducting thin films // ACS Appl. Mater. Interfaces. 2015. V. 7. № 47. P. 26124–26130. https://doi.org/10.1021/acsami.5b07692
77. Kempahanumakkagari S., Kumar V., Samaddar P. et al. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform // Biotechnol. Adv. 2018. V. 36. № 2. P. 467–481. https://doi.org/10.1016/j.biotechadv.2018.01.014
78. Ikezoe Y., Fang J., Wasik T.L. et al. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators // Adv. Mater. 2015. V. 27. № 2. P. 288–291. https://doi.org/10.1002/adma.201404273
79. Hintz H., S. Wuttke S. Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study // Chem. Commun. 2014. V. 50. № 78. P. 11472–11475. https://doi.org/10.1039/c4cc02650k.
80. Ikezoe Y., Fang J., Wasik T.L. et al. Peptide-metal organic framework swimmers that direct the motion toward chemical targets // Nano Lett. 2015. V. 15. № 6. P. 4019–4023. https://doi.org/10.1021/acs.nanolett.5b00969
81. Morris W., Briley W. E., Auyeung E. et al. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates // J. Am. Chem. Soc. 2014. V. 136. № 20. P. 7261– 7264. https://doi.org/10.1021/ja503215w
82. Wang S., McGuirk C.M., Ross M.B. et al. General and direct method for preparing oligonucleotidefunctionalized metal-organic framework nanoparticles // J. Am. Chem. Soc. 2017. V. 139. № 29. P. 9827–9830. https://doi.org/10.1021/jacs.7b05633
83. Qiu G.-H., Weng Z.-H., Hu P.-P. et al. Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper(II) metal-organic framework // Talanta. 2018. V. 180. P. 396–402. https://doi.org/10.1016/j.talanta.2017.12.045
84. Zhang H.-T., Zhang J.-W., Huang G. et al. An amine-functionalized metal-organic framework as a sensing platform for DNA detection // Chem. Commun. 2014. V. 50. № 81. P. 12069–12072. https://doi.org/10.1039/c4cc05571c
85. Li P., Chen Q., Wang T.C. et al. Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems // Chem. 2018. V. 4. № 5. P. 1022–1034. https://doi.org/10.1016/j.chempr.2018.03.001
86. Chen Y., Li P., Modica J.A. et al. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release // J. Am. Chem. Soc. 2018. V. 140. № 17. P. 5678–5681. https://doi.org/10.1021/jacs.8b02089
87. Gkaniatsou E., Sicard C., Ricoux R. et al. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules // Angew. Chem. Int. Edit. 2018. V. 57. № 49. P. 16141–16146. https://doi.org/10.1002/anie.201811327
88. Li P., Moon S.-Y., Guelta M.A. et al. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability // J. Am. Chem. Soc. 2016. V. 138. № 26. P. 8052–8055. https://doi.org/10.1021/jacs.6b03673
89. Zhong Z., Pang S., Wu Y. et al. Synthesis and characterization of mesoporous Cu-MOF for laccase immobilization // J. Chem. Technol. Biotechnol. 2017. V. 92. № 7. P. 1841–1847. https://doi.org/10.1002/jctb.5189
90. Pisklak T.J., Macías M., Coutinho D.H. et al. Hybrid materials for immobilization of MP-11 catalyst // Top Catal. 2006. V. 38. № 4. P. 269–278. https://doi.org/10.1007/s11244-006-0025-6
91. Rambabu D., Pooja, Pradeep C.P., Dhir A. A cytochrome C encapsulated metal organic framework as a bio-material for sulfate ion recognition // J. Mater. Chem. A. 2014. V. 2. № 23. P. 8628–8631.https://doi.org/10.1039/C4TA01599A
92. Chen W., Yang W., Lu Y. et al. Encapsulation of enzyme into mesoporous cages of metal–organic frameworks for the development of highly stable electrochemical biosensors // Anal. Methods. 2017. V. 9. № 21. P. 3213–3220. https://doi.org/10.1039/C7AY00710H
93. Deng H., Grunder S., Cordova K.E. et al. Largepore apertures in a series of metal-organic frameworks // Science. 2012. V. 336. № 6084. P. 1018–1023. https://doi.org/10.1126/science.1220131
94. Chen Y., Lykourinou V., Hoang T. et al. Sizeselective biocatalysis of myoglobin immobilized into a mesoporous metal-organic framework with hierarchical pore sizes // Inorg. Chem. 2012. V. 51. № 17. P. 9156–9158. https://doi.org/10.1021/ic301280n
95. Kim Y., Yang T., Yun G. et al. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs // Angew. Chem. Int. Edit. 2015. V. 54. № 45. P. 13273–13278. https://doi.org/10.1002/anie.201506391
96. Li P., Modica J.A., Howarth A.J. et al. Toward design rules for enzyme immobilization in hierarchical mesoporous metal-organic frameworks // Chem. 2016. V. 1. № 1. P. 154–169. https://doi.org/10.1016/j.chempr.2016.05.001
97. Chen Y., Han S., Li X. et al. Why does enzyme not leach from metal-organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF // Inorg. Chem. 2014. V. 53. № 19. P. 10006–10008. https://doi.org/10.1021/ic501062r
98. Chen Y., Lykourinou V., Vetromile C. et al. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows // J. Am. Chem. Soc. 2012. V. 134. № 32. P. 13188–13191. https://doi.org/10.1021/ja305144x
99. Liu W.-L., Lo S.-H., Singco B. et al. Novel trypsinFITC@MOF bioreactor efficiently catalyzes protein digestion // J. Mater. Chem. B. 2013. V. 1. № 7. P. 928–932. https://doi.org/10.1039/c3tb00257h
100. Liu W.-L., Wu C.-Y., Chen C.-Y. et al. Fast multipoint immobilized MOF bioreactor // Chem.-Eur. J. 2014. V. 20. № 29. P. 8923–8928. https://doi.org/10.1002/chem.201400270
101. Liu W.-L., Yang N.-S., Chen Y.-T. et al. Lipase‐ supported metal–organic framework bioreactor catalyzes warfarin synthesis // Chem.-Eur. J. 2015. V. 21. № 1. P. 115– 119. https://doi.org/10.1002/chem.201405252
102. Ma W., Jiang Q., Yu P. et al. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements // Anal. Chem. 2013. V. 85. № 15. P. 7550–7557. https://doi.org/10.1021/ac401576u
103. Zhang C., Wang X., Hou M. et al. Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection // ACS Appl. Mater. Interfaces. 2017. V. 9. № 16. P. 13831–13836. https://doi.org/10.1021/acsami.7b02803
104. Zhang Y., Wang H., Liu J. et al. Enzymeembedded metal-organic framework membranes on polymeric substrates for efficient CO2 capture // J. Mater. Chem. A. 2017. V. 5. № 37. P. 19954–19962. https://doi.org/10.1039/C7TA03719H
105. Qin F.-X., Jia S.-Y., Wang F.-F. et al. Hemin@ metal-organic framework with peroxidase-like activity and its application to glucose detection // Catal. Sci. Technol. 2015. V. 3. № 10. P. 2761–2768. https://doi.org/10.1039/C3CY00268C
106. Cao Y., Wu Z., Wang T. et al. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification // Dalton Trans. 2016. V. 45. № 16. P. 6998– 7003. https://doi.org/10.1039/c6dt00677a
107. Liu G., Xu Y., Han Y. et al. Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8) // Dalton Trans. 2017. V. 46. № 7. P. 2114–2121. https://doi.org/10.1039/c6dt04582k
108. Lu X., Wang X., Wu L. et al. Response characteristics of bisphenols on a metal-organic frameworkbased tyrosinase nanosensor // ACS Appl. Mater. Interfaces. 2016. V. 8. № 25. P. 16533–16539. https://doi.org/10.1021/acsami.6b05008
109. Kumar P., Kim K.-H., Bansal V. et al. Practical utilization of nanocrystal metal organic framework biosensor for parathion specific recognition // Microchem. J. 2016. V. 128. P. 102–107. https://doi.org/10.1016/j.microc.2016.04.008
110. Zare A., Bordbar А.-К., Jafarian F., Tangestaninejad S. Candida rugosa lipase immobilization on various chemically modified Chromium terephthalate MIL-101 // J. Mol. Liq. 2018. V. 254. P. 137–144. https://doi.org/10.1016/j.molliq.2018.01.097
111. Jung S., Kim Y., Kim S.-J. et al. Biofunctionalization of metal-organic frameworks by covalent protein conjugation // Chem. Commun. 2011. V. 47. № 10. P. 2904–2906. https://doi.org/10.1039/c0cc03288c
112. Tudisco C., Zolubas G., Seoane B. et al. Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification // RSC Adv. 2016. V. 6. № 109. P. 108051–108055. https://doi.org/10.1039/C6RA19976C
113. Wang X., Makal T.A., Zhou H.-C. Protein immobilization in metal-organic frameworks by covalent binding // Aust. J. Chem. 2014. V. 67. № 11. P. 1629–1631. https://doi.org/10.1071/CH14104
114. Shih Y.-H., Lo S.-H., Yang N.-S. et al. Trypsinimmobilized metal-organic framework as a biocatalyst in proteomics analysis // ChemPlusChem. 2012. V. 77. № 11. P. 982–986. https://doi.org/10.1002/cplu.201200186
115. Wang Z., Cohen S.M. Postsynthetic covalent modification of a neutral metal-organic framework // J. Am. Chem. Soc. 2007. V. 129. № 41. P. 12368–12369. https://doi.org/10.1021/ja074366o
116. Kumar P., Deep A., Paul A.K., Bharadwaj L.M. Bioconjugation of MOF-5 for molecular sensing // J. Porous Mater. 2014. V. 21. № 1. P. 99–104. https://doi.org/10.1007/s10934-013-9752-9
117. Fujita D., Suzuki K., Sato S. et al. Protein encapsulation within synthetic molecular hosts // Nat. Commun. 2012. V. 3. P. e1093. https://doi.org/10.1038/ncomms2093
118. Patra S., Sene S., Mousty C. et al. Design of laccase-metal organic framework-based bioelectrodes for biocatalytic oxygen reduction reaction // ACS Appl. Mater. Interfaces. 2016. V. 8. № 31. P. 20012–20022. https://doi.org/10.1021/acsami.6b05289
119. Cao S.-L., Yue D.-M., Li X.-H. et al. Novel nano-/ micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1,2-octanediol in deep eutectic solvents // ACS Sustainable Chem. Eng. 2016. V. 4. № 6. P. 3586–3595. https://doi.org/10.1021/acssuschemeng.6b00777
120. Doherty C.M., Grenci G., Riccò R. et al. Combining UV lithography and an imprinting technique for patterning metal-organic frameworks // Adv. Mater. 2013. V. 25. № 34. P. 4701–4705. https://doi.org/10.1002/adma.201301383
121. Shieh F.-K., Wang S.-C., Leo S.-Y., Wu K.C.-W. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size // Chem.-Eur. J. 2013. V. 19. № 34. P. 11139–11142. https://doi.org/10.1002/chem.201301560
122. Jia Z., Wu G., Wu D. et al. Preparation of ultra-stable ZIF-8 dispersions in water and ethanol // J. Porous Mater. 2017. V. 24. № 6. P. 1655–1660. https://doi.org/10.1007/s10934-017-0405-2
123. Cheng H., Zhang L., He J. et al. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains // Anal. Chem. 2016. V. 88. № 10. P. 5489–5497. https://doi.org/10.1021/acs.analchem.6b00975
124. Cui J., Feng Y., Lin T. et al. Mesoporous metalorganic framework with well-defined cruciate flower-like morphology for enzyme immobilization // ACS Appl. Mater. Interfaces. 2017. V. 9. № 12. P. 10587–10594. https://doi.org/10.1021/acsami.7b00512
125. Wu X., Ge J., Yang C. et al. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment // Chem. Commun. 2015. V. 51. № 69. P. 13408–13411. https://doi.org/10.1039/c5cc05136c
126. Hou C., Wang Y., Ding Q. et al. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor // Nanoscale. 2015. V. 7. № 44. P. 18770–18779. https://doi.org/10.1039/c5nr04994f
127. Shieh F.-K., Wang S.-C., Yen C.-I et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: sizeselective sheltering of catalase in metal-organic framework microcrystals // J. Am. Chem. Soc. 2015. V. 137. № 13. P. 4276–4279. https://doi.org/10.1021/ja513058h
128. Liang K., Ricco R., Doherty C.M. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules // Nat. Commun. 2015. V. 6. P. e7240. https://doi.org/10.1038/ncomms8240
129. Lyu F., Zhang Y., Zare R.N. et al. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities // Nano Lett. 2014. V. 14. № 10. P. 5761–5765. https://doi.org/10.1021/nl5026419
130. Liao F.-S., Lo W.-S., Hsu Y.-S. et al. Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach // J. Am. Chem. Soc. 2017. V. 139. № 19. P. 6530–6533. https://doi.org/10.1021/jacs.7b01794
131. Chen T.-T., Yi J.-T., Zhao Y.-Y., Chu X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins // J. Am. Chem. Soc. 2018. V. 140. № 31. P. 9912–9920. https://doi.org/10.1021/jacs.8b04457
132. Liang W., Ricco R., Maddigan N.K. et al. Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites // Chem. Mater. 2018. V. 30. № 3. P. 1069–1077. https://doi.org/10.1021/acs.chemmater.7b04977
133. Wang C., Sun H., Luan J. et al. Metal-organic framework encapsulation for biospecimen preservation // Chem. Mater. 2018. V. 30. № 4. P. 1291–1300. https://doi.org/10.1021/acs.chemmater.7b04713
134. Liang Z., Yang Z., Yuan H. et al. A protein@ metal-organic framework nanocomposite for pH-triggered anticancer drug delivery // Dalton Trans. 2018. V. 47. № 30. P. 10223–10228. https://doi.org/10.1039/c8dt01789a
135. Li S., Dharmarwardana M., Welch R.P. et al. Investigation of controlled growth of metal-organic frameworks on anisotropic virus particles // ACS Appl. Mater. Interfaces. 2018. V. 10. № 21. P. 18161–18169. https://doi.org/10.1021/acsami.8b01369
136. Zhang M., Gu Z.-Y., Bosch M. et al. Biomimicry in metal-organic materials // Coord. Chem. Rev. 2015. V. 293- 294. P. 327–356. https://doi.org/10.1016/j.ccr.2014.05.031
137. Rojas S., Devic T., Horcajada P. Metal organic frameworks based on bioactive components // J. Mater. Chem. B. 2017. V. 5. № 14. P. 2560–2573. https://doi.org/10.1039/c6tb03217f
138. Oh H., Li T., An J. Drug Release Properties of a series of adenine-based metal-organic frameworks // Chem.-Eur. J. 2015. V. 21. № 47. P. 17010–17015. https://doi.org/10.1002/chem.201501560
139. An J., Farha O.K., Hupp J.T. et al. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework // Nat. Commun. 2012. V. 3. P. e604. https://doi.org/10.1038/ncomms1618
140. Amo-Ochoa P., Zamora F. Coordination polymers with nucleobases: From structural aspects to potential applications // Coord. Chem. Rev. 2014. V. 276. P. 34–58. https://doi.org/10.1016/j.ccr.2014.05.017
141. An J., Geib S.J., Rosi N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework // J. Am. Chem. Soc. 2009. V. 131. № 24. P. 8376–8377. https://doi.org/10.1021/ja902972w
142. Li T., Kozlowski M.T., Doud E.A. et al. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs // J. Am. Chem. Soc. 2013. V. 135. № 32. P. 11688–11691. https://doi.org/10.1021/ja403810k
143. Zhang M., Lu W., Li J.-R. et al. Design and synthesis of nucleobase-incorporated metal–organic materials // Inorg. Chem. Front. 2014. V. 1. № 2. P. 159–162. https://doi.org/10.1039/C3QI00042G
144. Saunders C.D.L., Burford N., Werner-Zwanziger U., McDonald R. Preparation and Comprehensive Characterization of [Hg6 (Alanine)4 (NO3 ) 4 ]•H2 O // Inorg. Chem. 2008. V. 47. № 9. P. 3693–3699. https://doi.org/10.1021/ic702321d
145. Rabone J., Yue Y.-F., Chong S.Y. et al. An adaptable peptide-based porous material // Science. 2010. V. 329. № 5995. P. 1053–1057. https://doi.org/10.1126/science.1190672
146. Katsoulidis A.P., Park K.S., Antypov D. et al. Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control // Angew. Chem. Int. Edit. 2014. V. 53. № 1. P. 193–198. https://doi.org/10.1002/anie.201307074
147. Majewski M.B., Howarth A.J., Li P. et al. Enzyme encapsulation in metal-organic frameworks for applications in catalysis // CrystEngComm. 2017. V. 19. № 29. P. 4082–4091. https://doi.org/10.1039/C7CE00022G
148. Chulkaivalsucharit P., Wu X., Ge J. Synthesis of enzyme-embedded metal-organic framework nanocrystals in reverse micelles // RSC Adv. 2015. V. 5. № 123. P. 101293– 101296. https://doi.org/10.1039/C5RA21069K
149. Tadepalli S., Yim J., Cao S. et al. MetalOrganic framework encapsulation for the preservation and photothermal enhancement of enzyme activity // Small. 2018. V. 14. P. e1702382. https://doi.org/10.1002/smll.201702382.
150. Xu Z., Xiao G., Li H. et al. Compartmentalization within self-assembled metal-organic framework nanoparticles for tandem reactions // Adv. Funct. Mater. 2018. V. 28. № 34. P. e1802479. https://doi.org/10.1002/adfm.201802479
151. Jeong G.-Y., Ricco R., Liang K. et al. Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation // Chem. Mater. 2015. V. 27. № 23. P. 7903– 7909. https://doi.org/10.1021/acs.chemmater.5b02847
152. Rafiei S., Tangestaninejad S., Horcajada P. et al. Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor // Chem. Eng. J. 2018. V. 334. P. 1233–1241. http://dx.doi.org/10.1016/j.cej.2017.10.094
153. Hu Y., Dai L., Liu D., Du W. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase // Green Chem. 2018. V. 20. № 19. P. 4500–4506. https://doi.org/10.1039/C8GC01284A.
154. Pitzalis F., Carucci C., Naseri M. et al. Lipase Encapsulation onto ZIF-8: a comparison between biocatalysts obtained at low and high zinc/2- methylimidazole molar ratio in aqueous medium // ChemCatChem. 2018. V. 10. № 7. P. 1578–1585. https://doi.org/10.1002/cctc.201701984
155. Shi L., Cai X., Li H. et al. ZIF-67 Derived porous carbon from calcination and acid etching process as an enzyme immobilization platform for glucose sensing // Electroanalysis. 2018. V. 30. № 3. P. 466–473. https://doi.org/10.1002/elan.201700678
156. Liu X., Qi W., Wang Y. et al. Rational design of mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks // ACS Appl. Mater. Interfaces. 2018. V. 10. № 39. P. 33407–33415. https://doi.org/10.1021/acsami.8b09388
157. Chakrapani V., Ahmed K.B.A., Kumar V.V. et al. A facile route to synthesize casein capped copper nanoparticles: an effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan // RSC Adv. 2014. V. 4. № 63. P. 33215–33221. https://doi.org/10.1039/C4RA03086A
158. Yin Y., Gao C., Xiao Q. et al. Protein-Metal Organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform // ACS Appl. Mater. Interfaces. 2016. V. 8. № 42. P. 29052–29061. https://doi.org/10.1021/acsami.6b09893
159. Liu X., Qi W., Wang Y. et al. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks // Nanoscale. 2017. V. 9. № 44. P. 17561–17570. https://doi.org/10.1039/c7nr06019j.
160. Wang X., Lu X., Wu L., Chen J. 3D metalorganic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A // Biosens. Bioelectron. 2015. V. 65. P. 295–301. https://doi.org/10.1016/j.bios.2014.10.010.
161. Xie S., Ye J., Yuan Y. et al. A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection // Nanoscale. 2015. V. 7. № 43. P. 18232–18238. https://doi.org/10.1039/C5NR04532K.
162. Shen W.-J., Zhuo Y., Chai Y.-Q., Yuan R. Cubased metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection // Anal. Chem. 2015. V. 87. № 22. P. 11345–11352. https://doi.org/10.1021/acs.analchem.5b02694
163. Dong S., Zhang D., Suo G. et al. Exploiting multi-function metal-organic framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing // Anal. Chim. Acta. 2016. V. 934. P. 203–211. https://doi.org/10.1016/j.aca.2016.05.040
164. Dong S., Peng L., Wei W., Huang T. Three MOFTemplated carbon nanocomposites for potential platforms of enzyme immobilization with improved electrochemical performance // ACS Appl. Mater. Interfaces. 2018. V. 10. № 17. P. 14665–14672. https://doi.org/10.1021/acsami.8b00702
165. Zhang X., Zeng Y., Zheng A. et al. A fluorescence based immunoassay for galectin-4 using gold nanoclusters and a composite consisting of glucose oxidase and a metalorganic framework // Microchim Acta. 2017. V. 184. № 7. P. 1933–1940. https://doi.org/10.1007/s00604-017-2204-5
166. Gong C., Shen Y., Chen J. et al. Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide // Sensor. Actuat. B-Chem. 2017. V. 239. P. 890– 897. https://doi.org/10.1016/j.snb.2016.08.108
167. Ling P., Lei J., Zhang L., Ju H. Porphyrinencapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA // Anal. Chem. 2015. V. 87. № 7. P. 3957–3963. https://doi.org/10.1021/acs.analchem.5b00001
168. Chen J., Yu C., Zhao Y. et al. A novel noninvasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs // Biosens. Bioelectron. 2017. V. 91. P. 892–899. https://doi.org/10.1016/j.bios.2016.10.067
169. Wu Y., Han J., Xue P. et al. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells // Nanoscale. 2015. V. 7. № 5. P. 1753–1759. https://doi.org/10.1039/c4nr05447d
170. Shen X., Yan B. A novel fluorescence probe for sensing organic amine vapors from a Eu3+ β-diketonate functionalized bio-MOF-1 hybrid system // J. Mater. Chem. C. 2015. V. 3. № 27. P. 7038–7044. https://doi.org/10.1039/C5TC01287B
171. Shen X., Yan B. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing // J. Colloid Interf. Sci. 2015. V. 451. P. 63–68. https://doi.org/10.1016/j.jcis.2015.03.039
172. Weng H., Yan B. A Eu(III) doped metal-organic framework conjugated with fluorescein-labeled singlestranded DNA for detection of Cu(II) and sulfide // Anal. Chim. Acta. 2017. V. 988. P. 89–95. https://doi.org/10.1016/j.aca.2017.07.061
173. Wang X., Yang C., Zhu S. et al. 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework // Biosens. Bioelectron. 2017. V. 87. P. 108–115. https://doi.org/10.1016/j.bios.2016.08.016
174. Hu P.-P., Liu N., Wu K.-Y. et al. Successive and specific detection of Hg2+ and I- by a DNA@MOF biosensor: experimental and simulation studies // Inorg. Chem. 2018. V. 57. № 14. P. 8382–8389. https://doi.org/10.1021/acs.inorgchem.8b01051
175. Horcajada P., Serre C., Vallet-Regí M. et al. Metalorganic frameworks as efficient materials for drug delivery // Angew. Chem. Int. Edit. 2006. V. 45. № 36. P. 5974–5978. https://doi.org/10.1002/anie.200601878
176. He C., Lu K., Liu D., Lin W. Nanoscale metalorganic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drugresistant ovarian cancer cells // J. Am. Chem. Soc. 2014. V. 136. № 14. P. 5181–5184. https://doi.org/10.1021/ja4098862
177. Miller S.R., Heurtaux D., Baati T. et al. Biodegradable therapeutic MOFs for the delivery of bioactive molecules // Chem. Commun. 2010. V. 46. № 25. P. 4526–4528. https://doi.org/10.1039/C001181A
178. Wuttke S., Braig S., Preiß T. et al. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells // Chem. Commun. 2015. V. 51. № 87. P. 15752– 15755. https://doi.org/10.1039/c5cc06767g
179. Liu Y., Hou W., Xia L. et al. ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy // Chem. Sci. 2018. V. 9. № 38. P. 7505–7509. https://doi.org/10.1039/c8sc02210k
180. Shen H., Liu J., Lei J., Ju H. A core-shell nanoparticle-peptide@metal-organic framework as pH and enzyme dual-recognition switch for stepwise-responsive imaging in living cells // Chem. Commun. 2018. V. 54. № 66. P. 9155–9158. https://doi.org/10.1039/c8cc04621b
181. Wang Z., Fu Y., Kang Z. et al. Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton // J. Am. Chem. Soc. 2017. V. 139. № 44. P. 15784–15791. https://doi.org/10.1021/jacs.7b07895
182. Cheng G., Li W., Ha L. et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins // J. Am. Chem. Soc. 2018. V. 140. № 23. P. 7282–7291. https://doi.org/10.1021/jacs.8b03584
183. Uemura T., Yanai N., Kitagawa S. Polymerization reactions in porous coordination polymers // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1228–1236. https://doi.org/10.1039/b802583p
184. Zhao J., Li H., Han Y. et al. Chirality from substitution: enantiomer separation via a modified metalorganic framework // J. Mater. Chem. A. 2015. V. 3. № 23. P. 12145–12148
185. Navarro-Sánchez J., Argente-García A.I., Moliner-Martínez Y. et al. Peptide metal-organic frameworks for enantioselective separation of chiral drugs // J. Am. Chem. Soc. 2017. V. 139. № 12. P. 4294–4297. https://doi.org/10.1021/jacs.7b00280
186. Ren Z., Luo J., Wan Y. Highly permeable biocatalytic membrane prepared by 3D modification: Metal-organic frameworks ameliorate its stability for micropollutants removal // Chem. Eng. J. 2018. V. 348. P. 389–398. https://doi.org/10.1016/j.cej.2018.04.203
187. Mon M., Lloret F., Ferrando-Soria J. et al. Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a bioMOF // Angew. Chem. Int. Edit. 2016. V. 55. № 37. P. 11167–11172. https://doi.org/10.1002/anie.201606015
188. Kahn J.S., Freage L., Enkin N. et al. Stimuliresponsive DNA-functionalized metal-organic frameworks (MOFs) // Adv. Mater. 2017. V. 29. № 6. P. e1602782. https://doi.org/10.1002/adma.201602782
189. Guo Y., Jiang Z., Ying W. et al. A DNA-Threaded ZIF-8 membrane with high proton conductivity and low methanol permeability // Adv. Mater. 2018. V. 30. № 2. P. e1705155. https://doi.org/10.1002/adma.201705155
190. Liang K., Richardson J.J., Cui J. et al. Metalorganic framework coatings as cytoprotective exoskeletons for living cells // Adv. Mater. 2016. V. 28. № 36. P. 7910–7914. https://doi.org/10.1002/adma.201602335
191. Liang K., Richardson J.J., Doonan C.J. et al. An enzyme-coated metal-organic framework shell for synthetically adaptive cell survival // Angew. Chem. Int. Edit. 2017. V. 56. № 29. P. 8510–8515. https://doi.org/10.1002/anie.201704120
192. Feng Y., Wang H., Zhang S. et al. Antibodies@ MOFs: an In Vitro protective coating for preparation and storage of biopharmaceuticals // Adv. Mater. 2019. V. 31. № 2. e1805148. https://doi.org/10.1002/adma.201805148
Review
For citations:
Zavyalov V.V., Zavyalova N.V., Kholstov V.I., Gorelenkov V.K., Frolov G.A., Lyagin I.V., Efremenko E.N. Strategy for Development of Modern Protective Equipment Based on Organometallic Complexes with Desired Properties. Journal of NBC Protection Corps. 2020;4(3):305-337. (In Russ.) https://doi.org/10.35825/2587-5728-2020-4-3-305-337. EDN: ujyeyl